Suppr超能文献

高分辨率神经元爆发数据中的通用临界动力学。

Universal critical dynamics in high resolution neuronal avalanche data.

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA.

出版信息

Phys Rev Lett. 2012 May 18;108(20):208102. doi: 10.1103/PhysRevLett.108.208102. Epub 2012 May 16.

Abstract

The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.

摘要

神经计算的任务非常多样化。为了达到最佳功能,人们假设神经元网络在非平衡临界点附近运行。然而,临界动力学的实验证据尚无定论。在这里,我们表明培养的皮质网络的动力学是临界的。我们使用非平衡相变的框架分析了在单个神经元水平上收集的神经元网络数据。在确认的最引人注目的预测中,广泛变化持续时间的阵发活动的平均时间分布由单个通用标度函数定量描述。我们还表明,数据具有临界现象预测的另外三个特征:阵发大小和持续时间的近似幂律分布,亚临界相和超临界相的样本,以及反常指数之间的标度定律。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验