Larremore Daniel B, Carpenter Marshall Y, Ott Edward, Restrepo Juan G
Department of Applied Mathematics, University of Colorado at Boulder, Colorado 80309, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066131. doi: 10.1103/PhysRevE.85.066131. Epub 2012 Jun 28.
We characterize the distributions of size and duration of avalanches propagating in complex networks. By an avalanche we mean the sequence of events initiated by the externally stimulated excitation of a network node, which may, with some probability, then stimulate subsequent excitations of the nodes to which it is connected, resulting in a cascade of excitations. This type of process is relevant to a wide variety of situations, including neuroscience, cascading failures on electrical power grids, and epidemiology. We find that the statistics of avalanches can be characterized in terms of the largest eigenvalue and corresponding eigenvector of an appropriate adjacency matrix that encodes the structure of the network. By using mean-field analyses, previous studies of avalanches in networks have not considered the effect of network structure on the distribution of size and duration of avalanches. Our results apply to individual networks (rather than network ensembles) and provide expressions for the distributions of size and duration of avalanches starting at particular nodes in the network. These findings might find application in the analysis of branching processes in networks, such as cascading power grid failures and critical brain dynamics. In particular, our results show that some experimental signatures of critical brain dynamics (i.e., power-law distributions of size and duration of neuronal avalanches) are robust to complex underlying network topologies.
我们刻画了在复杂网络中传播的雪崩的规模和持续时间的分布。所谓雪崩,我们指的是由网络节点的外部刺激激发所引发的一系列事件,这些事件可能以一定概率随后刺激与之相连的节点的后续激发,从而导致一连串的激发。这种类型的过程与多种情形相关,包括神经科学、电网的级联故障以及流行病学。我们发现,雪崩的统计特性可以通过一个编码网络结构的合适邻接矩阵的最大特征值和相应特征向量来刻画。通过使用平均场分析,先前对网络中雪崩的研究没有考虑网络结构对雪崩规模和持续时间分布的影响。我们的结果适用于单个网络(而非网络集合),并给出了从网络中特定节点开始的雪崩的规模和持续时间分布的表达式。这些发现可能会在网络中的分支过程分析中得到应用,比如级联电网故障和关键脑动力学。特别地,我们的结果表明,关键脑动力学的一些实验特征(即神经元雪崩的规模和持续时间的幂律分布)对于复杂的底层网络拓扑结构具有鲁棒性。