Suppr超能文献

部分格兰杰因果关系——消除外生输入和潜在变量。

Partial Granger causality--eliminating exogenous inputs and latent variables.

作者信息

Guo Shuixia, Seth Anil K, Kendrick Keith M, Zhou Cong, Feng Jianfeng

机构信息

Department of Mathematics, Hunan Normal University, Changsha 410081, PR China.

出版信息

J Neurosci Methods. 2008 Jul 15;172(1):79-93. doi: 10.1016/j.jneumeth.2008.04.011. Epub 2008 Apr 20.

Abstract

Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

摘要

在多变量生物时间序列(如基因数据、蛋白质数据、生理数据)中识别因果相互作用的尝试,可能会受到环境(外源性)输入的混杂影响。使这个问题更加复杂的是,我们通常只能记录系统中所有相关变量的一个子集。这些记录的变量很可能受到未记录(潜在)变量的影响。为了解决这个问题,我们引入了一种广泛使用的因果关系统计量——格兰杰因果关系的新变体,它的灵感来自偏相关的定义。我们的“偏格兰杰因果关系”度量在各种线性和非线性的玩具模型上进行了广泛测试,并应用于实验数据:从绵羊颞下皮质记录的体内多电极阵列(MEA)局部场电位(LFP)。我们的结果表明,在许多现有条件格兰杰因果关系失效的情况下,偏格兰杰因果关系能够揭示在外源性输入和潜在变量存在时网络中元素之间的潜在相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验