Raineki Charlis, Shionoya Kiseko, Sander Kristin, Sullivan Regina M
Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, Orangeburg, New York 10962, USA.
Learn Mem. 2009 Jan 29;16(2):114-21. doi: 10.1101/lm.977909. Print 2009 Feb.
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1 sec)--both of which consistently produce odor-aversion learning throughout life and (3) odor-0.5-mA shock, which produces an odor preference in early life but an odor avoidance as pups mature. Pups were trained at postnatal day (PN) 7-8, 12-13, or 23-24, using odor-LiCl and two odor-shock conditioning paradigms of odor-0.5-mA shock and odor-1.2-mA shock. Here we show that in the youngest pups (PN7-8), odor-preference learning was associated with activity in the anterior piriform (olfactory) cortex, while odor-aversion learning was associated with activity in the posterior piriform cortex. At PN12-13, when all conditioning paradigms produced an odor aversion, the odor-0.5-mA shock, odor-1.2-mA shock, and odor-LiCl all continued producing learning-associated changes in the posterior piriform cortex. However, only odor-0.5-mA shock induced learning-associated changes within the basolateral amygdala. At weaning (PN23-24), all learning paradigms produced learning-associated changes in the posterior piriform cortex and basolateral amygdala complex. These results suggest at least two basic principles of the development of the neurobiology of learning: (1) Learning that appears similar throughout development can be supported by neural systems showing very robust developmental changes, and (2) the emergence of amygdala function depends on the learning protocol and reinforcement condition being assessed.
在支持成年动物这种学习的脑结构成熟之前,围产期幼崽就已经出现了气味偏好学习和气味厌恶学习。为了描述气味学习的发育过程,我们比较了三种学习范式:(1)气味-氯化锂(0.3M;体重的1%,腹腔注射)和(2)气味-1.2毫安电击(后肢,1秒)——这两种范式在整个生命过程中都能持续产生气味厌恶学习,以及(3)气味-0.5毫安电击,它在幼崽早期会产生气味偏好,但随着幼崽成熟会产生气味回避。在出生后第(PN)7 - 8天、12 - 13天或23 - 24天对幼崽进行训练,使用气味-氯化锂以及气味-0.5毫安电击和气味-1.2毫安电击这两种气味电击条件范式。我们在此表明,在最年幼的幼崽(PN7 - 8)中,气味偏好学习与前梨状(嗅觉)皮质的活动相关,而气味厌恶学习与后梨状皮质的活动相关。在PN12 - 13时,当所有条件范式都产生气味厌恶时,气味-0.5毫安电击、气味-1.2毫安电击和气味-氯化锂都继续在后梨状皮质产生与学习相关的变化。然而,只有气味-0.5毫安电击在基底外侧杏仁核内诱导出与学习相关的变化。在断奶时(PN23 - 24),所有学习范式都在后梨状皮质和基底外侧杏仁核复合体中产生了与学习相关的变化。这些结果提示了学习神经生物学发育的至少两个基本原则:(1)在整个发育过程中看似相似的学习可以由显示出非常显著发育变化的神经系统来支持,以及(2)杏仁核功能的出现取决于所评估的学习方案和强化条件。