Suppr超能文献

DT40淋巴细胞系的细胞器蛋白质组

The organelle proteome of the DT40 lymphocyte cell line.

作者信息

Hall Stephanie L, Hester Svenja, Griffin Julian L, Lilley Kathryn S, Jackson Antony P

机构信息

Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, United Kingdom.

出版信息

Mol Cell Proteomics. 2009 Jun;8(6):1295-305. doi: 10.1074/mcp.M800394-MCP200. Epub 2009 Jan 30.

Abstract

A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and endocytic pathway a high proportion of proteins are not uniquely localized to a single organelle, emphasizing the dynamic steady-state nature of intracellular compartments in eukaryotic cells.

摘要

真核细胞生物学中的一个主要挑战是了解单个蛋白质及其所在亚细胞区室的作用。在此,我们利用同位素标记技术对细胞器蛋白质进行定位,以完成对DT40淋巴细胞系主要细胞器的首次蛋白质组学分析。由于能够轻松实现基因敲除,该细胞系正成为一种重要的研究工具。我们通过分析富含整合膜蛋白或可溶性及外周相关蛋白的样品,鉴定出1090种蛋白质,并通过将其密度梯度分布与已知细胞器驻留蛋白的分布相匹配,将223种蛋白质定位到内质网、高尔基体、溶酶体、线粒体或质膜。一个显著的发现是,在分泌和内吞途径中,很大一部分蛋白质并非唯一地定位于单个细胞器,这突出了真核细胞内细胞区室的动态稳态性质。

相似文献

1
The organelle proteome of the DT40 lymphocyte cell line.
Mol Cell Proteomics. 2009 Jun;8(6):1295-305. doi: 10.1074/mcp.M800394-MCP200. Epub 2009 Jan 30.
2
Mapping the Arabidopsis organelle proteome.
Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6518-23. doi: 10.1073/pnas.0506958103. Epub 2006 Apr 17.
3
Localization of organelle proteins by isotope tagging (LOPIT).
Mol Cell Proteomics. 2004 Nov;3(11):1128-34. doi: 10.1074/mcp.T400009-MCP200. Epub 2004 Aug 4.
5
Isolation, Purity Assessment, and Proteomic Analysis of Endoplasmic Reticulum.
Methods Mol Biol. 2020;2139:117-131. doi: 10.1007/978-1-0716-0528-8_9.
6
Organelle homeostasis: from cellular mechanisms to disease.
FEBS J. 2022 Nov;289(22):6822-6831. doi: 10.1111/febs.16667.
7
A proteomic analysis of organelles from Arabidopsis thaliana.
Electrophoresis. 2000 Oct;21(16):3488-99. doi: 10.1002/1522-2683(20001001)21:16<3488::AID-ELPS3488>3.0.CO;2-3.
9
Lipid droplets: a dynamic organelle moves into focus.
FEBS Lett. 2010 Jun 3;584(11):2176-82. doi: 10.1016/j.febslet.2010.03.022. Epub 2010 Mar 18.

引用本文的文献

1
Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics.
Ann Appl Stat. 2022 Dec 1;16(4). doi: 10.1214/22-AOAS1603.
2
Quantitative Proteomics Using Isobaric Labeling: A Practical Guide.
Genomics Proteomics Bioinformatics. 2021 Oct;19(5):689-706. doi: 10.1016/j.gpb.2021.08.012. Epub 2022 Jan 8.
3
Subcellular Transcriptomics and Proteomics: A Comparative Methods Review.
Mol Cell Proteomics. 2022 Feb;21(2):100186. doi: 10.1016/j.mcpro.2021.100186. Epub 2021 Dec 16.
4
Subcellular proteomics.
Nat Rev Methods Primers. 2021;1. doi: 10.1038/s43586-021-00029-y. Epub 2021 Apr 29.
5
Bioinformatic Analysis of Temporal and Spatial Proteome Alternations During Infections.
Front Genet. 2021 Jul 2;12:667936. doi: 10.3389/fgene.2021.667936. eCollection 2021.
6
A Bioconductor workflow for the Bayesian analysis of spatial proteomics.
F1000Res. 2019 Apr 11;8:446. doi: 10.12688/f1000research.18636.1. eCollection 2019.
7
Assessing sub-cellular resolution in spatial proteomics experiments.
Curr Opin Chem Biol. 2019 Feb;48:123-149. doi: 10.1016/j.cbpa.2018.11.015. Epub 2018 Dec 14.
8
Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics.
Nat Commun. 2019 Jan 18;10(1):331. doi: 10.1038/s41467-018-08191-w.
9
A Bayesian mixture modelling approach for spatial proteomics.
PLoS Comput Biol. 2018 Nov 27;14(11):e1006516. doi: 10.1371/journal.pcbi.1006516. eCollection 2018 Nov.
10
Proteomics of nucleocytoplasmic partitioning.
Curr Opin Chem Biol. 2019 Feb;48:55-63. doi: 10.1016/j.cbpa.2018.10.027. Epub 2018 Nov 23.

本文引用的文献

1
The septin family of GTPases: architecture and dynamics.
Nat Rev Mol Cell Biol. 2008 Jun;9(6):478-89. doi: 10.1038/nrm2407. Epub 2008 May 14.
2
Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation.
J Biol Chem. 2008 Jun 27;283(26):18323-30. doi: 10.1074/jbc.M800056200. Epub 2008 Apr 30.
3
Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein.
EMBO J. 2008 Apr 23;27(8):1183-96. doi: 10.1038/emboj.2008.54. Epub 2008 Mar 20.
4
Integral and associated lysosomal membrane proteins.
Traffic. 2007 Dec;8(12):1676-1686. doi: 10.1111/j.1600-0854.2007.00643.x. Epub 2007 Sep 26.
5
Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling.
Mol Cell Proteomics. 2007 Dec;6(12):2045-57. doi: 10.1074/mcp.M700169-MCP200. Epub 2007 Sep 2.
6
Quantitative proteomic approach to study subcellular localization of membrane proteins.
Nat Protoc. 2006;1(4):1778-89. doi: 10.1038/nprot.2006.254.
7
Role of Sec24 isoforms in selective export of membrane proteins from the endoplasmic reticulum.
EMBO Rep. 2007 Mar;8(3):258-64. doi: 10.1038/sj.embor.7400893. Epub 2007 Jan 26.
8
Quantitative proteomics analysis of the secretory pathway.
Cell. 2006 Dec 15;127(6):1265-81. doi: 10.1016/j.cell.2006.10.036.
9
A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer.
J Cell Sci. 2007 Jan 1;120(Pt 1):45-54. doi: 10.1242/jcs.03302. Epub 2006 Dec 5.
10
Comparative proteomics of clathrin-coated vesicles.
J Cell Biol. 2006 Nov 20;175(4):571-8. doi: 10.1083/jcb.200607164.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验