Suppr超能文献

钾吸收系统在苜蓿中华根瘤菌渗透适应和共生性能中的作用。

Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance.

作者信息

Domínguez-Ferreras Ana, Muñoz Socorro, Olivares José, Soto María J, Sanjuán Juan

机构信息

Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.

出版信息

J Bacteriol. 2009 Apr;191(7):2133-43. doi: 10.1128/JB.01567-08. Epub 2009 Jan 30.

Abstract

Stimulation of potassium uptake is the most rapid response to an osmotic upshock in bacteria. This cation accumulates by a number of different transport systems whose importance has not been previously addressed for rhizobia. In silico analyses reveal the presence of genes encoding four possible potassium uptake systems in the genome of Sinorhizobium meliloti 1021: Kup1, Kup2, Trk, and Kdp. The study of the relevance of these systems under a number of different growth conditions and in symbiosis showed that the integrity of Kup1 or Trk is essential for growth under laboratory conditions even in osmotically balanced media and the absence of both systems leads to a reduced infectivity and competitiveness of the bacteria in alfalfa roots. Trk is the main system involved in the accumulation of potassium after an osmotic upshift and the most important system for growth of S. meliloti under hyperosmotic conditions. The other three systems, especially Kup1, are also relevant during the osmotic adaptation of the cell, and the relative importance of the Kdp system increases at low potassium concentrations.

摘要

钾摄取的刺激是细菌对渗透压骤升的最快速反应。这种阳离子通过多种不同的转运系统积累,而这些转运系统对根瘤菌的重要性此前尚未得到探讨。计算机分析表明,在苜蓿中华根瘤菌1021的基因组中存在编码四种可能的钾摄取系统的基因:Kup1、Kup2、Trk和Kdp。对这些系统在多种不同生长条件下以及共生关系中的相关性研究表明,即使在渗透压平衡的培养基中,Kup1或Trk的完整性对于实验室条件下的生长也是必不可少的,并且两种系统都缺失会导致细菌在苜蓿根中的感染性和竞争力降低。Trk是渗透压骤升后参与钾积累的主要系统,也是苜蓿中华根瘤菌在高渗条件下生长的最重要系统。其他三个系统,尤其是Kup1,在细胞的渗透压适应过程中也很重要,并且Kdp系统在低钾浓度下的相对重要性增加。

相似文献

1
Role of potassium uptake systems in Sinorhizobium meliloti osmoadaptation and symbiotic performance.
J Bacteriol. 2009 Apr;191(7):2133-43. doi: 10.1128/JB.01567-08. Epub 2009 Jan 30.
2
A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots.
Environ Microbiol. 2017 Jul;19(7):2661-2680. doi: 10.1111/1462-2920.13757. Epub 2017 May 11.
3
Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots.
J Bacteriol. 2009 Dec;191(24):7490-9. doi: 10.1128/JB.00725-09. Epub 2009 Oct 16.
5
Important Late-Stage Symbiotic Role of the Sinorhizobium meliloti Exopolysaccharide Succinoglycan.
J Bacteriol. 2018 Jun 11;200(13). doi: 10.1128/JB.00665-17. Print 2018 Jul 1.
6
Identification of Sinorhizobium meliloti early symbiotic genes by use of a positive functional screen.
Appl Environ Microbiol. 2006 Apr;72(4):2738-48. doi: 10.1128/AEM.72.4.2738-2748.2006.
10
Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins.
Mol Plant Microbe Interact. 2012 Mar;25(3):355-62. doi: 10.1094/MPMI-09-11-0249.

引用本文的文献

1
Bacterial osmoprotectants-a way to survive in saline conditions and potential crop allies.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf020.
2
Role of Environmental Factors in Legume- Symbiosis: A Review.
Biomolecules. 2025 Jan 14;15(1):118. doi: 10.3390/biom15010118.
3
Regulation of potassium uptake in .
J Bacteriol. 2024 Sep 19;206(9):e0010724. doi: 10.1128/jb.00107-24. Epub 2024 Aug 12.
5
Metal nutrition and transport in the process of symbiotic nitrogen fixation.
Plant Commun. 2024 Apr 8;5(4):100829. doi: 10.1016/j.xplc.2024.100829. Epub 2024 Feb 1.

本文引用的文献

1
Mechanisms of high salinity tolerance in plants.
Methods Enzymol. 2007;428:419-38. doi: 10.1016/S0076-6879(07)28024-3.
2
Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.
Science. 2007 Jun 1;316(5829):1307-12. doi: 10.1126/science.1139548.
3
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
J Bacteriol. 2006 Nov;188(21):7617-25. doi: 10.1128/JB.00719-06. Epub 2006 Aug 17.
4
Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021.
Microbiology (Reading). 2006 Jul;152(Pt 7):2049-2059. doi: 10.1099/mic.0.28937-0.
6
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Genome Biol. 2006;7(4):R34. doi: 10.1186/gb-2006-7-4-r34. Epub 2006 Apr 26.
7
The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3834-9. doi: 10.1073/pnas.0508502103. Epub 2006 Feb 27.
8
Method for Testing Degree of Infectivity of Rhizobium meliloti Strains.
Appl Environ Microbiol. 1980 May;39(5):967-70. doi: 10.1128/aem.39.5.967-970.1980.
10
Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes.
Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300. doi: 10.1128/MMBR.68.2.280-300.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验