Suppr超能文献

探索加速的力学基础:赛犬(家犬)加速过程中的后肢运动功能。

Exploring the mechanical basis for acceleration: pelvic limb locomotor function during accelerations in racing greyhounds (Canis familiaris).

作者信息

Williams S B, Usherwood J R, Jespers K, Channon A J, Wilson A M

机构信息

Department of Veterinary Preclinical Sciences, Faculty of Veterinary Science, The University of Liverpool, Liverpool, UK.

出版信息

J Exp Biol. 2009 Feb;212(Pt 4):550-65. doi: 10.1242/jeb.018093.

Abstract

Animals in their natural environments are confronted with a regular need to perform rapid accelerations (for example when escaping from predators or chasing prey). Such acceleration requires net positive mechanical work to be performed on the centre of mass by skeletal muscle. Here we determined how pelvic limb joints contribute to the mechanical work and power that are required for acceleration in galloping quadrupeds. In addition, we considered what, if any, biomechanical strategies exist to enable effective acceleration to be achieved. Simultaneous kinematic and kinetic data were collected for racing greyhounds undergoing a range of low to high accelerations. From these data, joint moments and joint powers were calculated for individual hindlimb joints. In addition, the mean effective mechanical advantage (EMA) of the limb and the ;gear ratio' of each joint throughout stance were calculated. Greatest increases in joint work and power with acceleration appeared at the hip and hock joints, particularly in the lead limb. Largest increases in absolute positive joint work occurred at the hip, consistent with the hypothesis that quadrupeds power locomotion by torque about the hip. In addition, hindlimb EMA decreased substantially with increased acceleration - a potential strategy to increase stance time and thus ground impulses for a given peak force. This mechanism may also increase the mechanical advantage for applying the horizontal forces necessary for acceleration.

摘要

处于自然环境中的动物经常需要进行快速加速(例如在逃离捕食者或追逐猎物时)。这种加速需要骨骼肌对质心施加净正机械功。在这里,我们确定了在奔跑的四足动物中,骨盆肢体关节如何对加速所需的机械功和功率做出贡献。此外,我们还考虑了是否存在任何生物力学策略来实现有效的加速。我们收集了一系列从低到高加速度的赛犬的同步运动学和动力学数据。根据这些数据,计算了单个后肢关节的关节力矩和关节功率。此外,还计算了整个站立阶段肢体的平均有效机械优势(EMA)和每个关节的“传动比”。随着加速度的增加,关节功和功率的最大增加出现在髋关节和跗关节,特别是在前肢。绝对正关节功的最大增加发生在髋关节,这与四足动物通过髋关节扭矩进行动力运动的假设一致。此外,随着加速度的增加,后肢EMA显著降低——这是一种潜在的策略,可以增加站立时间,从而在给定峰值力的情况下增加地面冲量。这种机制还可能增加施加加速所需水平力的机械优势。

相似文献

2
Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade.
J Exp Biol. 2013 Jun 15;216(Pt 12):2201-12. doi: 10.1242/jeb.082495. Epub 2013 Mar 7.
3
Adjusting muscle function to demand: joint work during acceleration in wild turkeys.
J Exp Biol. 2004 Nov;207(Pt 23):4165-74. doi: 10.1242/jeb.01253.
4
Distribution of power across the hind limb joints in Labrador Retrievers and Greyhounds.
Am J Vet Res. 2005 Sep;66(9):1563-71. doi: 10.2460/ajvr.2005.66.1563.
5
Mechanical power output during running accelerations in wild turkeys.
J Exp Biol. 2002 May;205(Pt 10):1485-94. doi: 10.1242/jeb.205.10.1485.
6
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
7
Effects of fore-aft body mass distribution on acceleration in dogs.
J Exp Biol. 2011 May 15;214(Pt 10):1763-72. doi: 10.1242/jeb.054791.
8
Moments and power generated by the horse (Equus caballus) hind limb during jumping.
J Exp Biol. 2004 Feb;207(Pt 4):667-74. doi: 10.1242/jeb.00808.
9
Rapid acceleration in dogs: ground forces and body posture dynamics.
J Exp Biol. 2009 Jun;212(Pt 12):1930-9. doi: 10.1242/jeb.023762.

引用本文的文献

1
Effect of bar jump height on kinetics and kinematics of take-off in agility dogs.
PLoS One. 2025 Jan 24;20(1):e0315907. doi: 10.1371/journal.pone.0315907. eCollection 2025.
2
Markerless 3D kinematics and force estimation in cheetahs.
Sci Rep. 2024 May 8;14(1):10579. doi: 10.1038/s41598-024-60731-1.
3
Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats.
J Neurophysiol. 2022 Dec 1;128(6):1593-1616. doi: 10.1152/jn.00230.2022. Epub 2022 Nov 16.
4
Reliability of a New Bite Force Measure and Biomechanics of Modified Long Attack in Police Dogs.
Animals (Basel). 2021 Mar 18;11(3):874. doi: 10.3390/ani11030874.
5
Working Dog Structure: Evaluation and Relationship to Function.
Front Vet Sci. 2020 Oct 20;7:559055. doi: 10.3389/fvets.2020.559055. eCollection 2020.
6
Analysis of Agile Canine Gait Characteristics Using Accelerometry.
Sensors (Basel). 2019 Oct 10;19(20):4379. doi: 10.3390/s19204379.
7
Limb Kinematics, Kinetics and Muscle Dynamics During the Sit-to-Stand Transition in Greyhounds.
Front Bioeng Biotechnol. 2018 Nov 16;6:162. doi: 10.3389/fbioe.2018.00162. eCollection 2018.
9
The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles.
J Anat. 2016 Jul;229(1):142-52. doi: 10.1111/joa.12474. Epub 2016 Apr 15.

本文引用的文献

1
Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).
J Anat. 2008 Oct;213(4):361-72. doi: 10.1111/j.1469-7580.2008.00961.x. Epub 2008 Jul 22.
2
Functional specialisation of the thoracic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):491-505. doi: 10.1111/j.1469-7580.2007.00703.x.
3
Functional specialisation of the pelvic limb of the hare (Lepus europeus).
J Anat. 2007 Apr;210(4):472-90. doi: 10.1111/j.1469-7580.2007.00704.x. Epub 2007 Mar 15.
4
Ground forces applied by galloping dogs.
J Exp Biol. 2007 Jan;210(Pt 2):208-16. doi: 10.1242/jeb.02645.
5
Muscle architecture and functional anatomy of the pelvic limb of the ostrich (Struthio camelus).
J Anat. 2006 Dec;209(6):765-79. doi: 10.1111/j.1469-7580.2006.00658.x.
7
Inertial properties of hominoid limb segments.
J Anat. 2006 Aug;209(2):201-18. doi: 10.1111/j.1469-7580.2006.00588.x.
8
Morphological analysis of the hindlimb in apes and humans. II. Moment arms.
J Anat. 2006 Jun;208(6):725-42. doi: 10.1111/j.1469-7580.2006.00564.x.
9
Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.
J Anat. 2006 Jun;208(6):709-24. doi: 10.1111/j.1469-7580.2006.00563.x.
10
Biomechanics: no force limit on greyhound sprint speed.
Nature. 2005 Dec 8;438(7069):753-4. doi: 10.1038/438753a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验