Skokowa Julia, Lan Dan, Thakur Basant Kumar, Wang Fei, Gupta Kshama, Cario Gunnar, Brechlin Annette Müller, Schambach Axel, Hinrichsen Lars, Meyer Gustav, Gaestel Matthias, Stanulla Martin, Tong Qiang, Welte Karl
Department of Molecular Hematopoiesis, Hannover Medical School, Carl-Neuberg Strasse 1, 30625 Hannover, Germany.
Nat Med. 2009 Feb;15(2):151-8. doi: 10.1038/nm.1913. Epub 2009 Feb 1.
We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia. Intracellular NAMPT and NAD(+) amounts in myeloid cells, as well as plasma NAMPT and NAD(+) levels, were increased by G-CSF treatment of both healthy volunteers and individuals with congenital neutropenia. NAMPT administered both extracellularly and intracellularly induced granulocytic differentiation of CD34(+) hematopoietic progenitor cells and of the promyelocytic leukemia cell line HL-60. Treatment of healthy individuals with high doses of vitamin B3 (nicotinamide), a substrate of NAMPT, induced neutrophilic granulocyte differentiation. The molecular events triggered by NAMPT include NAD(+)-dependent sirtuin-1 activation, subsequent induction of CCAAT/enhancer binding protein-alpha and CCAAT/enhancer binding protein-beta, and, ultimately, upregulation of G-CSF synthesis and G-CSF receptor expression. G-CSF, in turn, further increases NAMPT levels. These results reveal a decisive role of the NAD(+) metabolic pathway in G-CSF-triggered myelopoiesis.
我们确定烟酰胺磷酸核糖转移酶(NAMPT),也称为前B细胞集落增强因子(PBEF),是健康个体和严重先天性中性粒细胞减少症个体中介导粒细胞集落刺激因子(G-CSF)触发粒细胞生成的必需酶。对健康志愿者和先天性中性粒细胞减少症个体进行G-CSF治疗后,骨髓细胞中的细胞内NAMPT和NAD(+)含量以及血浆NAMPT和NAD(+)水平均升高。细胞外和细胞内给予NAMPT均可诱导CD34(+)造血祖细胞和早幼粒细胞白血病细胞系HL-60的粒细胞分化。用高剂量维生素B3(烟酰胺)治疗健康个体,烟酰胺是NAMPT的一种底物,可诱导嗜中性粒细胞分化。NAMPT触发的分子事件包括NAD(+)依赖性沉默调节蛋白-1激活、随后诱导CCAAT/增强子结合蛋白-α和CCAAT/增强子结合蛋白-β,最终上调G-CSF合成和G-CSF受体表达。反过来,G-CSF进一步提高NAMPT水平。这些结果揭示了NAD(+)代谢途径在G-CSF触发的骨髓生成中的决定性作用。