Suppr超能文献

NAD代谢与去乙酰化酶:应激和毒性中蛋白质去乙酰化的代谢调控

NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity.

作者信息

Yang Tianle, Sauve Anthony A

机构信息

Department of Pharmacology, Weill Medical College of Cornell University, New York, NY, USA.

出版信息

AAPS J. 2006 Oct 6;8(4):E632-43. doi: 10.1208/aapsj080472.

Abstract

Sirtuins are recently discovered NAD(+)-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins, thereby regulating the biological function of their targets. Sirtuins have been shown to increase organism and tissue survival in diverse organisms, ranging from yeast to mammals. Evidence indicates that NAD(+) metabolism and sirtuins contribute to mechanisms that influence cell survival under conditions of stress and toxicity. For example, recent work has shown that sirtuins and increased NAD(+) biosynthesis provide protection against neuron axonal degeneration initiated by genotoxicity or trauma. In light of their protective effects, sirtuins and NAD(+) metabolism could represent therapeutic targets for treatment of acute and chronic neurodegenerative conditions. Our work has focused on elucidating the enzymatic functions of sirtuins and quantifying perturbations of cellular NAD(+) metabolism. We have developed mass spectrometry methods to quantitate cellular NAD(+) and nicotinamide. These methods allow the quantitation of changes in the amounts of these metabolites in cells caused by chemical and genetic interventions. Characterization of the biochemical properties of sirtuins and investigations of NAD(+) metabolism are likely to provide new insights into mechanisms by which NAD(+) metabolism regulates sirtuin activities in cells. To develop new strategies to improve cell stress resistance, we have initiated proof of concept studies on pharmacological approaches that target sirtuins and NAD(+) metabolism, with the goal of enhancing cell protection against genotoxicity.

摘要

沉默调节蛋白是最近发现的依赖烟酰胺腺嘌呤二核苷酸(NAD⁺)的去乙酰化酶,可从乙酰赖氨酸修饰的蛋白质上去除乙酰基,从而调节其靶标的生物学功能。已证明沉默调节蛋白可提高从酵母到哺乳动物等多种生物体的机体和组织存活率。有证据表明,NAD⁺代谢和沉默调节蛋白有助于在应激和毒性条件下影响细胞存活的机制。例如,最近的研究表明,沉默调节蛋白和增加的NAD⁺生物合成可提供保护,防止由基因毒性或创伤引发的神经元轴突退化。鉴于它们的保护作用,沉默调节蛋白和NAD⁺代谢可能代表治疗急性和慢性神经退行性疾病的治疗靶点。我们的工作重点是阐明沉默调节蛋白的酶功能,并量化细胞NAD⁺代谢的扰动。我们已经开发了质谱方法来定量细胞中的NAD⁺和烟酰胺。这些方法可以定量化学和基因干预引起的细胞中这些代谢物含量的变化。对沉默调节蛋白生化特性的表征以及对NAD⁺代谢的研究可能会为NAD⁺代谢调节细胞中沉默调节蛋白活性的机制提供新的见解。为了开发提高细胞抗应激能力的新策略,我们已经启动了针对沉默调节蛋白和NAD⁺代谢的药理学方法的概念验证研究,目标是增强细胞对基因毒性的保护作用。

相似文献

2
Sirtuins: NAD(+)-dependent deacetylase mechanism and regulation.
Curr Opin Chem Biol. 2012 Dec;16(5-6):535-43. doi: 10.1016/j.cbpa.2012.10.003. Epub 2012 Oct 23.
3
Mitochondrial sirtuins.
Biochim Biophys Acta. 2010 Aug;1804(8):1645-51. doi: 10.1016/j.bbapap.2009.12.021. Epub 2010 Jan 7.
4
Conserved metabolic regulatory functions of sirtuins.
Cell Metab. 2008 Feb;7(2):104-12. doi: 10.1016/j.cmet.2007.11.006.
5
The biochemistry of sirtuins.
Annu Rev Biochem. 2006;75:435-65. doi: 10.1146/annurev.biochem.74.082803.133500.
7
Functional Characterization of Sirtuin-like Protein in Mycobacterium smegmatis.
J Proteome Res. 2015 Nov 6;14(11):4441-9. doi: 10.1021/acs.jproteome.5b00359. Epub 2015 Sep 29.
8
Regulatory Effects of NAD Metabolic Pathways on Sirtuin Activity.
Prog Mol Biol Transl Sci. 2018;154:71-104. doi: 10.1016/bs.pmbts.2017.11.012.
9
Sirtuin deacylases: a molecular link between metabolism and immunity.
J Leukoc Biol. 2013 May;93(5):669-80. doi: 10.1189/jlb.1112557. Epub 2013 Jan 16.
10
Investigating the ADP-ribosyltransferase activity of sirtuins with NAD analogues and 32P-NAD.
Biochemistry. 2009 Apr 7;48(13):2878-90. doi: 10.1021/bi802093g.

引用本文的文献

3
Emerging Gene Therapy Technologies for Retinal Ganglion Cell Neuroprotection.
J Neuroophthalmol. 2023 Sep 1;43(3):330-340. doi: 10.1097/WNO.0000000000001955. Epub 2023 Jul 12.
4
NAD metabolism: Role in senescence regulation and aging.
Aging Cell. 2024 Jan;23(1):e13920. doi: 10.1111/acel.13920. Epub 2023 Jul 9.
5
The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression.
J Exp Med. 2023 Apr 3;220(4). doi: 10.1084/jem.20221738. Epub 2023 Feb 14.
7
Mitochondrial dysfunction is a key pathological driver of early stage Parkinson's.
Acta Neuropathol Commun. 2022 Sep 8;10(1):134. doi: 10.1186/s40478-022-01424-6.
8
NAD Precursors: A Questionable Redundancy.
Metabolites. 2022 Jul 9;12(7):630. doi: 10.3390/metabo12070630.
10
CD38-Induced Apoptosis and Mitochondrial Damage is Restored by Nicotinamide in Prostate Cancer.
Front Mol Biosci. 2022 May 23;9:890402. doi: 10.3389/fmolb.2022.890402. eCollection 2022.

本文引用的文献

1
The biochemistry of sirtuins.
Annu Rev Biochem. 2006;75:435-65. doi: 10.1146/annurev.biochem.74.082803.133500.
3
Calorie restriction mimetics: an emerging research field.
Aging Cell. 2006 Apr;5(2):97-108. doi: 10.1111/j.1474-9726.2006.00202.x.
4
Ageing and neuronal vulnerability.
Nat Rev Neurosci. 2006 Apr;7(4):278-94. doi: 10.1038/nrn1886.
5
Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.
Brain Res Bull. 2006 Mar 31;69(2):117-22. doi: 10.1016/j.brainresbull.2005.11.011. Epub 2005 Dec 15.
6
TNF regulates cellular NAD+ metabolism in primary macrophages.
Biochem Biophys Res Commun. 2006 Apr 21;342(4):1312-8. doi: 10.1016/j.bbrc.2006.02.109. Epub 2006 Feb 28.
7
Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain.
PLoS Med. 2006 Apr;3(4):e101. doi: 10.1371/journal.pmed.0030101. Epub 2006 Feb 21.
8
Genomic instability and aging-like phenotype in the absence of mammalian SIRT6.
Cell. 2006 Jan 27;124(2):315-29. doi: 10.1016/j.cell.2005.11.044.
9
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells.
PLoS Biol. 2006 Feb;4(2):e31. doi: 10.1371/journal.pbio.0040031. Epub 2005 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验