Suppr超能文献

生物分子通过血液滤过膜的转运。

Biomolecular transport through hemofiltration membranes.

作者信息

Conlisk A T, Datta Subhra, Fissell William H, Roy Shuvo

机构信息

Department of Mechanical Engineering, The Ohio State University, 201 West 19th Avenue, Columbus, OH 43210, USA.

出版信息

Ann Biomed Eng. 2009 Apr;37(4):722-36. doi: 10.1007/s10439-009-9642-0. Epub 2009 Jan 30.

Abstract

A theoretical model for filtration of large solutes through a pore in the presence of transmembrane pressures, applied/induced electric fields, and dissimilar interactions at the pore entrance and exit is developed to characterize and predict the experimental performance of a hemofiltration membrane with nanometer scale pores designed for a proposed implantable Renal Assist Device (RAD). The model reveals that the sieving characteristics of the membrane can be improved by applying an external electric field, and ensuring a smaller ratio of the pore-feed and pore-permeate equilibrium partitioning coefficients when diffusion is present. The model is then customized to study the sieving characteristics for both charged and uncharged solutes in the slit-shaped nanopores of the hemofiltration device for the RAD. The effect of streaming potential or induced fields are found to be negligible under representative operating conditions. Experimental data on the sieving coefficient of bovine serum albumin, carbonic anhydrase and thyroglobulin are reported and compared with the theoretical predictions. Both steric and electrostatic partitioning are considered and the comparison suggests that in general electrostatic effects are present in the filtration of proteins though some data, particularly those recorded in a strongly hypertonic solution (10x PBS), show better agreement with the steric partitioning theory.

摘要

建立了一个理论模型,用于描述在跨膜压力、外加/感应电场以及孔入口和出口处不同相互作用存在的情况下,大溶质通过孔隙的过滤过程,以表征和预测为拟议的植入式肾辅助装置(RAD)设计的具有纳米级孔隙的血液滤过膜的实验性能。该模型表明,通过施加外部电场,并在存在扩散时确保孔进料和孔渗透平衡分配系数的较小比值,可以改善膜的筛分特性。然后对该模型进行定制,以研究RAD血液滤过装置狭缝状纳米孔中带电和不带电溶质的筛分特性。发现在典型操作条件下,流动电位或感应场的影响可忽略不计。报告了牛血清白蛋白、碳酸酐酶和甲状腺球蛋白筛分系数的实验数据,并与理论预测值进行了比较。同时考虑了空间位阻和静电分配,比较结果表明,虽然一些数据,特别是在强高渗溶液(10倍磷酸盐缓冲液)中记录的数据与空间位阻分配理论的一致性更好,但一般来说,蛋白质过滤中存在静电效应。

相似文献

1
Biomolecular transport through hemofiltration membranes.
Ann Biomed Eng. 2009 Apr;37(4):722-36. doi: 10.1007/s10439-009-9642-0. Epub 2009 Jan 30.
2
Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
J Colloid Interface Sci. 2018 May 1;517:176-181. doi: 10.1016/j.jcis.2017.12.056. Epub 2017 Dec 20.
3
Protein diffusion through charged nanopores with different radii at low ionic strength.
Phys Chem Chem Phys. 2014 Oct 21;16(39):21570-6. doi: 10.1039/c4cp03198a. Epub 2014 Sep 5.
4
On the behavior of electrokinetic streaming potential during protein filtration with fully and partially retentive nanopores.
J Colloid Interface Sci. 2003 Aug 1;264(1):195-202. doi: 10.1016/s0021-9797(03)00352-7.
5
6
A mechanistic model of plasma filtration.
Med Eng Phys. 1998 Jul;20(5):383-92. doi: 10.1016/s1350-4533(98)00021-6.
7
Retention of small charged impurities during ultrafiltration.
Biotechnol Bioeng. 2004 Jul 5;87(1):7-13. doi: 10.1002/bit.20009.
8
Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
Phys Chem Chem Phys. 2012 Nov 21;14(43):15066-77. doi: 10.1039/c2cp42577g. Epub 2012 Oct 4.
9
Controlling protein transport in ultrafiltration using small charged ligands.
Biotechnol Bioeng. 2005 Sep 20;91(6):733-42. doi: 10.1002/bit.20543.
10
Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes.
Biotechnol Prog. 1992 Nov-Dec;8(6):553-61. doi: 10.1021/bp00018a013.

引用本文的文献

1
Oxygen transport in nanoporous SiN membrane compared to PDMS and polypropylene for microfluidic ECMO.
Biomed Microdevices. 2025 May 28;27(2):22. doi: 10.1007/s10544-025-00750-5.
2
Oxygen Transport in Nanoporous SiN Membrane Compared to PDMS and Polypropylene for Microfluidic ECMO.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
3
Characterization of human islet function in a convection-driven intravascular bioartificial pancreas.
Bioeng Transl Med. 2022 Dec 14;8(2):e10444. doi: 10.1002/btm2.10444. eCollection 2023 Mar.
4
Artificial Kidney Engineering: The Development of Dialysis Membranes for Blood Purification.
Membranes (Basel). 2022 Feb 2;12(2):177. doi: 10.3390/membranes12020177.
5
Original article submission: Platelet stress accumulation analysis to predict thrombogenicity of an artificial kidney.
J Biomech. 2018 Mar 1;69:26-33. doi: 10.1016/j.jbiomech.2018.01.014. Epub 2018 Jan 16.
6
Bioengineering in renal transplantation: technological advances and novel options.
Pediatr Nephrol. 2018 Jul;33(7):1105-1111. doi: 10.1007/s00467-017-3706-4. Epub 2017 Jun 6.
8
Diffusive Silicon Nanopore Membranes for Hemodialysis Applications.
PLoS One. 2016 Jul 20;11(7):e0159526. doi: 10.1371/journal.pone.0159526. eCollection 2016.

本文引用的文献

1
Numerical simulation of electroosmotic flow.
Anal Chem. 1998 May 1;70(9):1870-81. doi: 10.1021/ac970846u.
2
Permeability - Selectivity Analysis for Ultrafiltration: Effect of Pore Geometry.
J Memb Sci. 2010 Mar 1;349(1-2):405. doi: 10.1016/j.memsci.2009.12.003.
3
High-Performance Silicon Nanopore Hemofiltration Membranes.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
4
Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength.
Biomed Microdevices. 2009 Feb;11(1):251-8. doi: 10.1007/s10544-008-9231-2.
5
Ficoll is not a rigid sphere.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F1209-13. doi: 10.1152/ajprenal.00097.2007. Epub 2007 Jul 25.
6
Charge- and size-based separation of macromolecules using ultrathin silicon membranes.
Nature. 2007 Feb 15;445(7129):749-53. doi: 10.1038/nature05532.
7
The future of hemodialysis membranes.
Kidney Int. 2006 Apr;69(7):1115-9. doi: 10.1038/sj.ki.5000204.
8
Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells.
Biomaterials. 2006 Jun;27(16):3075-83. doi: 10.1016/j.biomaterials.2005.12.017. Epub 2006 Feb 2.
9
Influence of PEG architecture on protein adsorption and conformation.
Langmuir. 2005 Dec 20;21(26):12327-32. doi: 10.1021/la051726h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验