Fissell William H, Dubnisheva Anna, Eldridge Abigail N, Fleischman Aaron J, Zydney Andrew L, Roy Shuvo
Departments of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio.
J Memb Sci. 2009 Jan 5;326(1):58-63. doi: 10.1016/j.memsci.2008.09.039.
Silicon micromachining provides the precise control of nanoscale features that can be fundamentally enabling for miniaturized, implantable medical devices. Concerns have been raised regarding blood biocompatibility of silicon-based materials and their application to hemodialysis and hemofiltration. A high-performance ultrathin hemofiltration membrane with monodisperse slit-shaped pores was fabricated using a sacrificial oxide technique and then surface-modified with poly(ethylene glycol) (PEG). Fluid and macromolecular transport matched model predictions well. Protein adsorption, fouling, and thrombosis were significantly inhibited by the PEG. The membrane retained hydraulic permeability and molecular selectivity during a 90 hour hemofiltration experiment with anticoagulated bovine whole blood. This is the first report of successful prolonged hemofiltration with a silicon nanopore membrane. The results demonstrate feasibility of renal replacement devices based on these membranes and materials.
硅微加工技术能够精确控制纳米级特征,这从根本上有助于实现医疗设备的小型化和可植入性。人们对硅基材料的血液生物相容性及其在血液透析和血液滤过中的应用提出了担忧。采用牺牲氧化物技术制备了具有单分散狭缝形孔的高性能超薄血液滤过膜,然后用聚乙二醇(PEG)进行表面改性。流体和大分子传输与模型预测结果吻合良好。PEG显著抑制了蛋白质吸附、污垢形成和血栓形成。在使用抗凝牛全血进行的90小时血液滤过实验中,该膜保持了水力渗透性和分子选择性。这是关于硅纳米孔膜成功进行长时间血液滤过的首次报道。结果证明了基于这些膜和材料的肾脏替代装置的可行性。