Suppr超能文献

药物固体的晶体形态工程:压片性能增强

Crystal morphology engineering of pharmaceutical solids: tabletting performance enhancement.

作者信息

Mirza Sabiruddin, Miroshnyk Inna, Heinämäki Jyrki, Antikainen Osmo, Rantanen Jukka, Vuorela Pia, Vuorela Heikki, Yliruusi Jouko

机构信息

Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.

出版信息

AAPS PharmSciTech. 2009;10(1):113-9. doi: 10.1208/s12249-009-9187-4. Epub 2009 Jan 30.

Abstract

Crystal morphology engineering of a macrolide antibiotic, erythromycin A dihydrate, was investigated as a tool for tailoring tabletting performance of pharmaceutical solids. Crystal habit modification was induced by using a common pharmaceutical excipient, hydroxypropyl cellulose, as an additive during crystallization from solution. Observed morphology of the crystals was compared with the predicted Bravais-Friedel-Donnay-Harker morphology. An analysis of the molecular arrangements along the three dominant crystal faces [(002), (011), and (101)] was carried out using molecular simulation and thus the nature of the host-additive interactions was deduced. The crystals with modified habit showed improved compaction properties as compared with those of unmodified crystals. Overall, the results of this study proved that crystal morphology engineering is a valuable tool for enhancing tabletting properties of active pharmaceutical ingredients and thus of utmost practical value.

摘要

研究了大环内酯类抗生素二水合红霉素A的晶体形态工程,将其作为一种调整药物固体压片性能的工具。在从溶液中结晶过程中,通过使用一种常见的药用辅料羟丙基纤维素作为添加剂来诱导晶体习性改变。将观察到的晶体形态与预测的布拉维-弗里德尔-多纳伊-哈克形态进行比较。利用分子模拟对沿三个主要晶面[(002)、(011)和(101)]的分子排列进行了分析,从而推断出主体-添加剂相互作用的性质。与未改性晶体相比,习性改性的晶体表现出改善的压实性能。总体而言,本研究结果证明晶体形态工程是增强活性药物成分压片性能的一种有价值的工具,因此具有极大的实用价值。

相似文献

1
Crystal morphology engineering of pharmaceutical solids: tabletting performance enhancement.
AAPS PharmSciTech. 2009;10(1):113-9. doi: 10.1208/s12249-009-9187-4. Epub 2009 Jan 30.
4
An experimental investigation of temperature rise during compaction of pharmaceutical powders.
Int J Pharm. 2016 Nov 20;513(1-2):97-108. doi: 10.1016/j.ijpharm.2016.09.012. Epub 2016 Sep 4.
5
Hot tabletting of slow-release tramadol hydrochloride microcapsules with cores obtained via compaction.
Drug Dev Ind Pharm. 2010 Feb;36(2):209-17. doi: 10.3109/03639040903517898.
6
Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
Int J Pharm. 2018 Jan 30;536(1):127-137. doi: 10.1016/j.ijpharm.2017.11.060. Epub 2017 Nov 28.
8
The formulation and stability of erythromycin-benzoyl peroxide in a topical gel.
Int J Pharm. 1999 Feb 1;178(1):137-41. doi: 10.1016/s0378-5173(98)00366-4.
9
Excipient-process interactions and their impact on tablet compaction and film coating.
J Pharm Sci. 2014 Nov;103(11):3666-3674. doi: 10.1002/jps.24169. Epub 2014 Sep 15.
10
High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids.
Adv Drug Deliv Rev. 2004 Feb 23;56(3):275-300. doi: 10.1016/j.addr.2003.10.020.

引用本文的文献

1
2
The Dimensionality of Hydrogen Bond Networks Induces Diverse Physical Properties of Peptide Crystals.
ACS Mater Lett. 2024 Jul 23;6(8):3824-3833. doi: 10.1021/acsmaterialslett.4c00665. eCollection 2024 Aug 5.
3
Morphological Control of Crystalline Savolitinib via the Volatile Deep Eutectic Solvent Technique.
Cryst Growth Des. 2024 Mar 1;24(6):2567-2572. doi: 10.1021/acs.cgd.4c00035. eCollection 2024 Mar 20.
5
Efficient, Green, and Low-Cost Conversion of Bivalve-Shell Wastes to Value-Added Calcium Lactate.
ACS Omega. 2023 Jul 18;8(30):27044-27055. doi: 10.1021/acsomega.3c02042. eCollection 2023 Aug 1.
6
Characterization of Pharmaceutical Tablets by X-ray Tomography.
Pharmaceuticals (Basel). 2023 May 11;16(5):733. doi: 10.3390/ph16050733.
7
Periodic DFT Calculations-Review of Applications in the Pharmaceutical Sciences.
Pharmaceutics. 2020 May 1;12(5):415. doi: 10.3390/pharmaceutics12050415.
8
Self-nanomicellizing solid dispersion of edaravone: part I - oral bioavailability improvement.
Drug Des Devel Ther. 2018 Jul 5;12:2051-2069. doi: 10.2147/DDDT.S161940. eCollection 2018.
9

本文引用的文献

1
Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.
Adv Drug Deliv Rev. 2007 Jul 30;59(7):617-30. doi: 10.1016/j.addr.2007.05.011. Epub 2007 May 29.
3
Anisotropic surface chemistry of crystalline pharmaceutical solids.
AAPS PharmSciTech. 2006 Oct 6;7(4):84. doi: 10.1208/pt070484.
6
Influence of crystal structure on the compaction properties of n-alkyl 4-hydroxybenzoate esters (parabens).
Pharm Res. 2006 Jul;23(7):1608-16. doi: 10.1007/s11095-006-0275-9. Epub 2006 Jun 21.
7
Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen.
J Colloid Interface Sci. 2005 Oct 15;290(2):325-35. doi: 10.1016/j.jcis.2005.04.049.
9
Drugs as materials: valuing physical form in drug discovery.
Nat Rev Drug Discov. 2004 Nov;3(11):926-34. doi: 10.1038/nrd1550.
10
Impact of solid state properties on developability assessment of drug candidates.
Adv Drug Deliv Rev. 2004 Feb 23;56(3):321-34. doi: 10.1016/j.addr.2003.10.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验