Fang Yuqi, Zhang Junhao, Wang Linmin, Wang Qianqian, Liu Mingxia
Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
School of Mathematics Science, Liaocheng University, Liaocheng, Shandong 252000, China.
Neuroimage. 2025 Jan;305:120967. doi: 10.1016/j.neuroimage.2024.120967. Epub 2024 Dec 21.
Functional magnetic resonance imaging (fMRI) has been increasingly employed to investigate functional brain activity. Many fMRI-related software/toolboxes have been developed, providing specialized algorithms for fMRI analysis. However, existing toolboxes seldom consider fMRI data augmentation, which is quite useful, especially in studies with limited or imbalanced data. Moreover, current studies usually focus on analyzing fMRI using conventional machine learning models that rely on human-engineered fMRI features, without investigating deep learning models that can automatically learn data-driven fMRI representations. In this work, we develop an open-source toolbox, called Augmentation and Computation Toolbox for braIn netwOrk aNalysis (ACTION), offering comprehensive functions to streamline fMRI analysis. The ACTION is a Python-based and cross-platform toolbox with graphical user-friendly interfaces. It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation. Many popular methods for brain network construction and network feature extraction are included. In particular, it supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data (3,800+ resting-state fMRI scans) for model pretraining to enhance model performance for downstream tasks. To facilitate multi-site fMRI studies, it is also equipped with several popular federated learning strategies. Furthermore, it enables users to design and test custom algorithms through scripting, greatly improving its utility and extensibility. We demonstrate the effectiveness and user-friendliness of ACTION on real fMRI data and present the experimental results. The software, along with its source code and manual, can be accessed online.
功能磁共振成像(fMRI)已越来越多地用于研究大脑功能活动。许多与fMRI相关的软件/工具箱已经开发出来,为fMRI分析提供了专门的算法。然而,现有的工具箱很少考虑fMRI数据增强,而数据增强非常有用,特别是在数据有限或不均衡的研究中。此外,目前的研究通常集中在使用依赖人工设计的fMRI特征的传统机器学习模型来分析fMRI,而没有研究能够自动学习数据驱动的fMRI表征的深度学习模型。在这项工作中,我们开发了一个名为用于脑网络分析的增强与计算工具箱(ACTION)的开源工具箱,提供全面的功能来简化fMRI分析。ACTION是一个基于Python的跨平台工具箱,具有图形化的用户友好界面。它能够实现fMRI的自动增强,包括血氧水平依赖(BOLD)信号增强和脑网络增强。它包含了许多用于脑网络构建和网络特征提取的流行方法。特别是,它支持构建深度学习模型,利用大规模的辅助未标记数据(3800多次静息态fMRI扫描)进行模型预训练,以提高下游任务的模型性能。为了便于多中心fMRI研究,它还配备了几种流行的联邦学习策略。此外,它还能让用户通过脚本设计和测试自定义算法,大大提高了其实用性和可扩展性。我们在真实的fMRI数据上展示了ACTION的有效性和用户友好性,并呈现了实验结果。该软件及其源代码和手册可在线获取。