Suppr超能文献

内隐而非外显情感预测昼夜节律性和反应性皮质醇:采用内隐正负性情感测验

Implicit but not explicit affectivity predicts circadian and reactive cortisol: using the implicit positive and negative affect test.

作者信息

Quirin Markus, Kazén Miguel, Rohrmann Sonja, Kuhl Julius

机构信息

Department of Psychology, University of Osnabrück, Germany.

出版信息

J Pers. 2009 Apr;77(2):401-25. doi: 10.1111/j.1467-6494.2008.00552.x. Epub 2009 Feb 2.

Abstract

Self-report measures assess mental processes or representations that are consciously accessible. In contrast, implicit measures assess automatic processes that often operate outside awareness. Whereas self-report measures have often failed to show expected relationships with endocrine stress responses, little effort has been made to relate implicit measures to endocrine processes. The present work examines whether implicit affectivity as assessed by the Implicit Positive and Negative Affect Test (IPANAT) predicts cortisol regulation. In Study 1, implicit low positive affectivity, but not negative affectivity, significantly predicted circadian cortisol release. In Study 2, implicit negative affectivity, but not positive affectivity, significantly predicted the cortisol response to acute stress. By contrast, cortisol regulation was not predicted by self-reported affectivity. The findings support the use of implicit affectivity measures in studying individual differences in endocrine stress responses and point to a differential role of positive and negative affectivity in baseline versus stress-contingent cortisol release, respectively.

摘要

自我报告测量评估的是那些能够被有意识地获取的心理过程或表征。相比之下,内隐测量评估的是那些通常在意识之外运作的自动过程。虽然自我报告测量常常未能显示出与内分泌应激反应的预期关系,但在内隐测量与内分泌过程之间的关联方面所做的努力却很少。本研究探讨通过内隐正负性情感测验(IPANAT)评估的内隐情感性是否能预测皮质醇调节。在研究1中,内隐低正性情感性而非负性情感性显著预测了昼夜皮质醇释放。在研究2中,内隐负性情感性而非正性情感性显著预测了对急性应激的皮质醇反应。相比之下,自我报告的情感性并不能预测皮质醇调节。这些发现支持在内分泌应激反应的个体差异研究中使用内隐情感性测量,并分别指出正性和负性情感性在基线与应激相关的皮质醇释放中具有不同的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验