Lafortune Louise, Béland François, Bergman Howard, Ankri Joël
Department of Health Administration, Université de Montréal, Québec, Canada.
BMC Geriatr. 2009 Feb 3;9:6. doi: 10.1186/1471-2318-9-6.
For older persons with complex care needs, accounting for the variability and interdependency in how health dimensions manifest themselves is necessary to understand the dynamic of health status. Our objective is to test the hypothesis that a latent classification can capture this heterogeneity in a population of frail elderly persons living in the community. Based on a person-centered approach, the classification corresponds to substantively meaningful groups of individuals who present with a comparable constellation of health problems.
Using data collected for the SIPA project, a system of integrated care for frail older people (n = 1164), we performed latent class analyses to identify homogenous categories of health status (i.e. health profiles) based on 17 indicators of prevalent health problems (chronic conditions; depression; cognition; functional and sensory limitations; instrumental, mobility and personal care disability) Then, we conducted latent transition analyses to study change in profile membership over 2 consecutive periods of 12 and 10 months, respectively. We modeled competing risks for mortality and lost to follow-up as absorbing states to avoid attrition biases.
We identified four health profiles that distinguish the physical and cognitive dimensions of health and capture severity along the disability dimension. The profiles are stable over time and robust to mortality and lost to follow-up attrition. The differentiated and gender-specific patterns of transition probabilities demonstrate the profiles' sensitivity to change in health status and unmasked the differential relationship of physical and cognitive domains with progression in disability.
Our approach may prove useful at organization and policy levels where many issues call for classification of individuals into pragmatically meaningful groups. In dealing with attrition biases, our analytical strategy could provide critical information for the planning of longitudinal studies of aging. Combined, these findings address a central challenge in geriatrics by making the multidimensional and dynamic nature of health computationally tractable.
对于有复杂护理需求的老年人,考虑健康维度表现方式的变异性和相互依赖性对于理解健康状况动态变化至关重要。我们的目标是检验这样一个假设,即潜在分类能够捕捉社区中体弱老年人群体的这种异质性。基于以人为本的方法,该分类对应于具有可比健康问题组合的实质性有意义的个体群体。
利用为SIPA项目收集的数据,这是一个针对体弱老年人的综合护理系统(n = 1164),我们进行了潜在类别分析,以基于17项常见健康问题指标(慢性病;抑郁症;认知;功能和感官限制;工具性、行动和个人护理残疾)确定健康状况的同质类别(即健康概况)。然后,我们进行了潜在转变分析,以分别研究在连续两个为期12个月和10个月的时间段内概况成员的变化。我们将死亡和失访的竞争风险建模为吸收状态,以避免损耗偏差。
我们确定了四种健康概况,它们区分了健康的身体和认知维度,并捕捉了残疾维度上的严重程度。这些概况随时间稳定,对死亡率和失访损耗具有稳健性。不同且具有性别特异性的转变概率模式表明了这些概况对健康状况变化的敏感性,并揭示了身体和认知领域与残疾进展之间的差异关系。
我们的方法在组织和政策层面可能证明是有用的,在这些层面,许多问题需要将个体分类为实际有意义的群体。在处理损耗偏差方面,我们的分析策略可为老龄化纵向研究的规划提供关键信息。综合起来,这些发现通过使健康的多维和动态性质在计算上易于处理,解决了老年医学中的一个核心挑战。