Suppr超能文献

通过培养、转录组学和反转录定量 PCR 揭示兼性 Fe(II)氧化剂 Sideroxydans lithotrophicus 菌株 ES-1 中的 Fe(II)氧化机制

Unraveling Fe(II)-Oxidizing Mechanisms in a Facultative Fe(II) Oxidizer, Sideroxydans lithotrophicus Strain ES-1, via Culturing, Transcriptomics, and Reverse Transcription-Quantitative PCR.

机构信息

School of Marine Science and Policy, University of Delawaregrid.33489.35, Newark, Delaware, USA.

Department of Earth Sciences, University of Delawaregrid.33489.35, Newark, Delaware, USA.

出版信息

Appl Environ Microbiol. 2022 Jan 25;88(2):e0159521. doi: 10.1128/AEM.01595-21. Epub 2021 Nov 17.

Abstract

Sideroxydans lithotrophicus ES-1 grows autotrophically either by Fe(II) oxidation or by thiosulfate oxidation, in contrast to most other isolates of neutrophilic Fe(II)-oxidizing bacteria (FeOB). This provides a unique opportunity to explore the physiology of a facultative FeOB and constrain the genes specific to Fe(II) oxidation. We compared the growth of S. lithotrophicus ES-1 on Fe(II), thiosulfate, and both substrates together. While initial growth rates were similar, thiosulfate-grown cultures had higher yield with or without Fe(II) present, which may give ES-1 an advantage over obligate FeOB. To investigate the Fe(II) and S oxidation pathways, we conducted transcriptomics experiments, validated with reverse transcription-quantitative PCR (RT-qPCR). We explored the long-term gene expression response at different growth phases (over days to a week) and expression changes during a short-term switch from thiosulfate to Fe(II) (90 min). The and sulfur oxidation genes were upregulated in thiosulfate cultures. The Fe(II) oxidase gene was among the top expressed genes during both Fe(II) and thiosulfate oxidation, and addition of Fe(II) to thiosulfate-grown cells caused an increase in expression. These results support the role of Cyc2 as the Fe(II) oxidase and suggest that ES-1 maintains readiness to oxidize Fe(II), even in the absence of Fe(II). We used gene expression profiles to further constrain the ES-1 Fe(II) oxidation pathway. Notably, among the most highly upregulated genes during Fe(II) oxidation were genes for alternative complex III, reverse electron transport, and carbon fixation. This implies a direct connection between Fe(II) oxidation and carbon fixation, suggesting that CO is an important electron sink for Fe(II) oxidation. Neutrophilic FeOB are increasingly observed in various environments, but knowledge of their ecophysiology and Fe(II) oxidation mechanisms is still relatively limited. isolates are widely observed in aquifers, wetlands, and sediments, and genome analysis suggests metabolic flexibility contributes to their success. The type strain ES-1 is unusual among neutrophilic FeOB isolates, as it can grow on either Fe(II) or a non-Fe(II) substrate, thiosulfate. Almost all our knowledge of neutrophilic Fe(II) oxidation pathways comes from genome analyses, with some work on metatranscriptomes. This study used culture-based experiments to test the genes specific to Fe(II) oxidation in a facultative FeOB and refine our model of the Fe(II) oxidation pathway. We gained insight into how facultative FeOB like ES-1 connect Fe, S, and C biogeochemical cycling in the environment and suggest a multigene indicator would improve understanding of Fe(II) oxidation activity in environments with facultative FeOB.

摘要

亚铁氧化硫杆菌 ES-1 可以通过亚铁(Fe(II))氧化或硫代硫酸盐氧化进行自养生长,而不同于大多数其他嗜中性亚铁氧化细菌(FeOB)。这为探索兼性 FeOB 的生理学特性和限制特定于 Fe(II)氧化的基因提供了独特的机会。我们比较了亚铁氧化硫杆菌 ES-1 在 Fe(II)、硫代硫酸盐和两者共同存在时的生长情况。虽然初始生长速率相似,但在有或没有 Fe(II)存在的情况下,硫代硫酸盐培养物的产率更高,这可能使 ES-1 比专性 FeOB 更具优势。为了研究 Fe(II)和 S 氧化途径,我们进行了转录组学实验,并通过反转录定量 PCR(RT-qPCR)进行了验证。我们探索了不同生长阶段(数天至一周)的长期基因表达响应以及从硫代硫酸盐到 Fe(II)(90 分钟)的短期切换过程中的表达变化。在硫代硫酸盐培养物中, 和 硫氧化基因上调。亚铁氧化酶基因 在 Fe(II)和硫代硫酸盐氧化过程中均为表达最高的基因之一,并且向硫代硫酸盐培养物中添加 Fe(II)会导致 表达增加。这些结果支持 Cyc2 作为 Fe(II)氧化酶的作用,并表明 ES-1 即使在没有 Fe(II)的情况下也保持氧化 Fe(II)的准备状态。我们使用基因表达谱进一步限制了 ES-1 的 Fe(II)氧化途径。值得注意的是,在 Fe(II)氧化过程中上调最明显的基因中,有替代复合物 III、反向电子传递和碳固定的基因。这暗示了 Fe(II)氧化和碳固定之间存在直接联系,表明 CO 是 Fe(II)氧化的重要电子汇。

嗜中性 FeOB 在各种环境中越来越常见,但对其生态生理学和 Fe(II)氧化机制的了解仍然相对有限。 分离株广泛存在于含水层、湿地和沉积物中,基因组分析表明代谢灵活性有助于它们的成功。模式株 ES-1 在嗜中性 FeOB 分离株中是不寻常的,因为它可以在 Fe(II)或非 Fe(II)底物硫代硫酸盐上生长。我们对嗜中性 Fe(II)氧化途径的几乎所有了解都来自于基因组分析,而一些关于宏转录组的工作。本研究使用基于培养的实验来测试兼性 FeOB 中特定于 Fe(II)氧化的基因,并改进我们的 Fe(II)氧化途径模型。我们深入了解了像 ES-1 这样的兼性 FeOB 如何在环境中连接 Fe、S 和 C 生物地球化学循环,并提出了一个多基因指标,以提高对具有兼性 FeOB 的环境中 Fe(II)氧化活性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ae/8788666/b0c20093dee1/aem.01595-21-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验