Suppr超能文献

机械心脏瓣膜内血流模拟的最新数值方法综述。

A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.

机构信息

St. Anthony Falls Laboratory, University of Minnesota, 2 Third Ave SE, Minneapolis, MN 55414, USA.

出版信息

Med Biol Eng Comput. 2009 Mar;47(3):245-56. doi: 10.1007/s11517-009-0438-z. Epub 2009 Feb 5.

Abstract

In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.

摘要

在每年进行的近一半心脏瓣膜置换手术中,由于其耐用性和长寿命,外科医生更倾向于植入双叶机械心脏瓣膜(BMHV)。然而,所有当前的 BMHV 设计都容易发生血栓栓塞并发症,植入物接受者需要终身服用抗凝药物。瓣膜叶片产生的非生理流动模式和湍流被认为是增加 BMHV 植入物接受者血栓栓塞风险的主要原因。在本文中,我们回顾了开发预测性流固耦合(FSI)算法的最新进展,该算法可以模拟生理条件下的 BMHV 流动,并具有足够精细的分辨率以开始探索血液动力学与血细胞损伤之间的联系。数值模拟首次揭示了瓣膜叶片下游的复杂血液动力学环境,并首次成功地解决了在减速流动阶段开始时观察到的向湍流状态的爆炸性转变。这些模拟还解决了一些实验观察到的瓣膜运动学的细微特征,例如叶片的不对称开启和关闭以及关闭过程中的叶片回弹。本文还讨论了未来的研究议程,旨在开发一个强大的基于患者的计算框架,用于在虚拟手术环境中优化瓣膜设计和植入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验