Suppr超能文献

斑马鱼脑干三维共聚焦数据集中神经元的自动识别。

Automated identification of neurons in 3D confocal datasets from zebrafish brainstem.

作者信息

Kamali M, Day L J, Brooks D H, Zhou X, O'Malley D M

机构信息

Department of Electrical and Computer Engineering, Boston, Massachusetts, USA.

出版信息

J Microsc. 2009 Jan;233(1):114-31. doi: 10.1111/j.1365-2818.2008.03102.x.

Abstract

Many kinds of neuroscience data are being acquired regarding the dynamic behaviour and phenotypic diversity of nerve cells. But as the size, complexity and numbers of 3D neuroanatomical datasets grow ever larger, the need for automated detection and analysis of individual neurons takes on greater importance. We describe here a method that detects and identifies neurons within confocal image stacks acquired from the zebrafish brainstem. The first step is to create a template that incorporates the location of all known neurons within a population - in this case the population of reticulospinal cells. Once created, the template is used in conjunction with a sequence of algorithms to determine the 3D location and identity of all fluorescent neurons in each confocal dataset. After an image registration step, neurons are segmented within the confocal image stack and subsequently localized to specific locations within the brainstem template - in many instances identifying neurons as specific, individual reticulospinal cells. This image-processing sequence is fully automated except for the initial selection of three registration points on a maximum projection image. In analysing confocal image stacks that ranged considerably in image quality, we found that this method correctly identified on average approximately 80% of the neurons (if we assume that manual detection by experts constitutes 'ground truth'). Because this identification can be generated approximately 100 times faster than manual identification, it offers a considerable time savings for the investigation of zebrafish reticulospinal neurons. In addition to its cell identification function, this protocol might also be integrated with stereological techniques to enhance quantification of neurons in larger databases. Our focus has been on zebrafish brainstem systems, but the methods described should be applicable to diverse neural architectures including retina, hippocampus and cerebral cortex.

摘要

目前正在获取有关神经细胞动态行为和表型多样性的多种神经科学数据。但是,随着三维神经解剖数据集的规模、复杂性和数量不断增大,对单个神经元进行自动检测和分析的需求变得愈发重要。我们在此描述一种方法,用于检测和识别从斑马鱼脑干获取的共聚焦图像堆栈中的神经元。第一步是创建一个模板,该模板纳入了群体中所有已知神经元的位置——在这种情况下是网状脊髓细胞群体。模板创建完成后,将其与一系列算法结合使用,以确定每个共聚焦数据集中所有荧光神经元的三维位置和身份。经过图像配准步骤后,在共聚焦图像堆栈中对神经元进行分割,随后将其定位到脑干模板内的特定位置——在许多情况下,将神经元识别为特定的单个网状脊髓细胞。除了在最大投影图像上最初选择三个配准点外,这个图像处理序列是完全自动化的。在分析图像质量差异很大的共聚焦图像堆栈时,我们发现该方法平均能正确识别约80%的神经元(如果我们假设专家手动检测构成“真实情况”)。由于这种识别的生成速度比手动识别快约100倍,它为斑马鱼网状脊髓神经元的研究节省了大量时间。除了其细胞识别功能外,该方案还可与体视学技术相结合,以加强对更大数据库中神经元的量化。我们的重点一直是斑马鱼脑干系统,但所描述的方法应适用于包括视网膜、海马体和大脑皮层在内的各种神经结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9a9/2798854/efb9970a598d/nihms157547f1.jpg

相似文献

6
Automated three-dimensional detection and counting of neuron somata.神经元胞体的自动三维检测与计数
J Neurosci Methods. 2009 May 30;180(1):147-60. doi: 10.1016/j.jneumeth.2009.03.008. Epub 2009 Mar 21.

引用本文的文献

2
Whole-body multispectral photoacoustic imaging of adult zebrafish.成年斑马鱼的全身多光谱光声成像。
Biomed Opt Express. 2016 Aug 19;7(9):3543-3550. doi: 10.1364/BOE.7.003543. eCollection 2016 Sep 1.
3
Automated processing of zebrafish imaging data: a survey.自动化处理斑马鱼成像数据:调查。
Zebrafish. 2013 Sep;10(3):401-21. doi: 10.1089/zeb.2013.0886. Epub 2013 Jun 12.
4
Graph theoretical model of a sensorimotor connectome in zebrafish.斑马鱼感觉运动连接组的图论模型。
PLoS One. 2012;7(5):e37292. doi: 10.1371/journal.pone.0037292. Epub 2012 May 18.

本文引用的文献

1
Genetic dissection of neural circuits.神经回路的遗传学剖析
Neuron. 2008 Mar 13;57(5):634-60. doi: 10.1016/j.neuron.2008.01.002.
3
Landmark matching via large deformation diffeomorphisms.基于大变形微分同胚的地标匹配。
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
4
Image registration based on boundary mapping.基于边界映射的图像配准。
IEEE Trans Med Imaging. 1996;15(1):112-5. doi: 10.1109/42.481446.
10
The neuron classification problem.神经元分类问题。
Brain Res Rev. 2007 Nov;56(1):79-88. doi: 10.1016/j.brainresrev.2007.05.005. Epub 2007 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验