Suppr超能文献

利用共聚焦图像堆栈的自动 3D 分析来量化皮质深度的神经元密度。

Quantification of neuronal density across cortical depth using automated 3D analysis of confocal image stacks.

机构信息

Center for Neural Science, New York University, 4 Washington Place, New York, NY, 10003, USA.

出版信息

Brain Struct Funct. 2017 Sep;222(7):3333-3353. doi: 10.1007/s00429-017-1382-6. Epub 2017 Feb 27.

Abstract

A new framework for measuring densities of immunolabeled neurons across cortical layers was implemented that combines a confocal microscopy sampling strategy with automated analysis of 3D image stacks. Its utility was demonstrated by quantifying neuronal density in macaque cortical areas V1 and V2. A series of overlapping confocal image stacks were acquired, each spanning from the pial surface to the white matter. DAPI channel images were automatically thresholded, and contiguous regions that included multiple clumped nuclear profiles were split using k-means clustering of image pixels for a set of candidate k values determined based on the clump's area; the most likely candidate segmentation was selected based on criteria that capture expected nuclear profile shape and size. The centroids of putative nuclear profiles estimated from 2D images were then grouped across z planes in an image stack to identify the positions of nuclei in x-y-z. 3D centroids falling outside user-specified exclusion boundaries were deleted, nuclei were classified by the presence or absence of signal in a channel corresponding to an immunolabeled antigen (e.g., the pan-neuronal marker NeuN) at the nuclear centroid location, and the set of classified cells was combined across image stacks to estimate density across cortical depth. The method was validated by comparison with conventional stereological methods. The average neuronal density across cortical layers was 230 × 10 neurons per mm in V1 and 130 × 10 neurons per mm in V2. The method is accurate, flexible, and general enough to measure densities of neurons of various molecularly identified types.

摘要

我们提出了一种新的方法来测量皮质各层免疫标记神经元的密度,该方法将共聚焦显微镜采样策略与 3D 图像堆栈的自动分析相结合。我们通过量化猕猴大脑皮质 V1 和 V2 区的神经元密度,证明了该方法的实用性。我们获取了一系列重叠的共聚焦图像堆栈,每个堆栈都从软脑膜表面延伸到白质。我们自动对 DAPI 通道图像进行阈值化,然后使用图像像素的 K 均值聚类将包含多个聚集核轮廓的连续区域分割开,对于一组候选 K 值,我们基于聚类的面积确定 K 值;然后根据捕获预期核轮廓形状和大小的标准,选择最可能的候选分割。从 2D 图像估计的假定核轮廓质心然后在图像堆栈的 z 平面上进行分组,以识别 x-y-z 中的核位置。3D 质心超出用户指定的排除边界的将被删除,根据核质心位置处对应于免疫标记抗原(例如,神经元标志物 NeuN)的信号存在或不存在对核进行分类,并且跨图像堆栈组合分类的细胞集以估计皮质深度的密度。该方法通过与传统的体视学方法进行比较得到了验证。在 V1 中,神经元的平均密度跨越皮质层为 230×10 个神经元/平方毫米,在 V2 中为 130×10 个神经元/平方毫米。该方法准确、灵活且足够通用,可以测量各种分子鉴定类型的神经元密度。

相似文献

3
Automated three-dimensional detection and counting of neuron somata.神经元胞体的自动三维检测与计数
J Neurosci Methods. 2009 May 30;180(1):147-60. doi: 10.1016/j.jneumeth.2009.03.008. Epub 2009 Mar 21.

引用本文的文献

本文引用的文献

1
Origin and Function of Tuning Diversity in Macaque Visual Cortex.猕猴视觉皮层中调谐多样性的起源与功能
Neuron. 2015 Nov 18;88(4):819-31. doi: 10.1016/j.neuron.2015.10.009. Epub 2015 Nov 5.
2
Predicting visual acuity from the structure of visual cortex.从视觉皮层结构预测视力
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7815-20. doi: 10.1073/pnas.1509282112. Epub 2015 Jun 8.
4
The big data challenges of connectomics.连接组学的大数据挑战。
Nat Neurosci. 2014 Nov;17(11):1448-54. doi: 10.1038/nn.3837. Epub 2014 Oct 28.
7
Toward large-scale connectome reconstructions.迈向大规模连接组重建。
Curr Opin Neurobiol. 2014 Apr;25:201-10. doi: 10.1016/j.conb.2014.01.019. Epub 2014 Mar 2.
8
Interneuron cell types are fit to function.中间神经元细胞类型适合发挥功能。
Nature. 2014 Jan 16;505(7483):318-26. doi: 10.1038/nature12983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验