Suppr超能文献

预测蛋白质亚细胞定位:利用基于氨基酸的特征空间序列和多种分类器的融合。

Predicting protein subcellular location: exploiting amino acid based sequence of feature spaces and fusion of diverse classifiers.

机构信息

Department of Mechatronics, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju, 500-712, Republic of Korea.

出版信息

Amino Acids. 2010 Jan;38(1):347-50. doi: 10.1007/s00726-009-0238-7. Epub 2009 Feb 7.

Abstract

A novel approach CE-Ploc is proposed for predicting protein subcellular locations by exploiting diversity both in feature and decision spaces. The diversity in a sequence of feature spaces is exploited using hydrophobicity and hydrophilicity of amphiphilic pseudo amino acid composition and a specific learning mechanism. Diversity in learning mechanisms is exploited by fusion of classifiers that are based on different learning mechanisms. Significant improvement in prediction performance is observed using jackknife and independent dataset tests.

摘要

提出了一种新的方法 CE-Ploc,通过利用特征空间和决策空间中的多样性来预测蛋白质亚细胞位置。利用两亲性伪氨基酸组成的疏水性和亲水性以及特定的学习机制来利用特征空间序列中的多样性。通过融合基于不同学习机制的分类器来利用学习机制的多样性。通过使用自举和独立数据集测试观察到预测性能的显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验