Suppr超能文献

蛋白质活性和稳定性的 pH 最佳值。

On the pH-optimum of activity and stability of proteins.

机构信息

Computational Biophysics and Bioinformatics, Physics Department, Clemson University, Clemson, South Carolina 29634, USA.

出版信息

Proteins. 2010 Sep;78(12):2699-706. doi: 10.1002/prot.22786.

Abstract

Biological macromolecules evolved to perform their function in specific cellular environment (subcellular compartments or tissues); therefore, they should be adapted to the biophysical characteristics of the corresponding environment, one of them being the characteristic pH. Many macromolecular properties are pH dependent, such as activity and stability. However, only activity is biologically important, while stability may not be crucial for the corresponding reaction. Here, we show that the pH-optimum of activity (the pH of maximal activity) is correlated with the pH-optimum of stability (the pH of maximal stability) on a set of 310 proteins with available experimental data. We speculate that such a correlation is needed to allow the corresponding macromolecules to tolerate small pH fluctuations that are inevitable with cellular function. Our findings rationalize the efforts of correlating the pH of maximal stability and the characteristic pH of subcellular compartments, as only pH of activity is subject of evolutionary pressure. In addition, our analysis confirmed the previous observation that pH-optimum of activity and stability are not correlated with the isoelectric point, pI, or with the optimal temperature.

摘要

生物大分子是为了在特定的细胞环境(亚细胞区室或组织)中执行其功能而进化的;因此,它们应该适应相应环境的生物物理特性,其中之一就是特征 pH 值。许多大分子特性都依赖于 pH 值,例如活性和稳定性。然而,只有活性在生物学上是重要的,而稳定性对于相应的反应可能并不关键。在这里,我们展示了在一组具有可用实验数据的 310 种蛋白质中,活性的 pH 最佳值(最大活性的 pH 值)与稳定性的 pH 最佳值(最大稳定性的 pH 值)之间存在相关性。我们推测,这种相关性是必需的,以允许相应的大分子能够耐受细胞功能不可避免的微小 pH 波动。我们的研究结果合理化了将最大稳定性 pH 值和亚细胞区室的特征 pH 值相关联的努力,因为只有活性 pH 值受到进化压力的影响。此外,我们的分析证实了先前的观察结果,即活性和稳定性的 pH 最佳值与等电点(pI)或最佳温度不相关。

相似文献

1
On the pH-optimum of activity and stability of proteins.
Proteins. 2010 Sep;78(12):2699-706. doi: 10.1002/prot.22786.
2
Subcellular pH and predicted pH-dependent features of proteins.
Proteomics. 2006 Jun;6(12):3494-501. doi: 10.1002/pmic.200500534.
3
Evidence for the adaptation of protein pH-dependence to subcellular pH.
BMC Biol. 2009 Oct 22;7:69. doi: 10.1186/1741-7007-7-69.
5
In silico modeling of pH-optimum of protein-protein binding.
Proteins. 2011 Mar;79(3):925-36. doi: 10.1002/prot.22931. Epub 2010 Dec 22.
6
Marginal protein stability drives subcellular proteome isoelectric point.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11778-11783. doi: 10.1073/pnas.1809098115. Epub 2018 Nov 1.
7
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
Pressure stability of proteins at their isoelectric points.
Protein Pept Lett. 2004 Dec;11(6):543-6. doi: 10.2174/0929866043406157.
10
Protein formulation through automated screening of pH and buffer conditions, using the Robotein® high throughput facility.
Eur Biophys J. 2021 May;50(3-4):473-490. doi: 10.1007/s00249-021-01510-y. Epub 2021 Feb 20.

引用本文的文献

2
Influence of life-history traits on mitochondrial DNA substitution rates exceeds that of metabolic rates in teleost fishes.
Curr Zool. 2024 Aug 24;71(3):284-294. doi: 10.1093/cz/zoae045. eCollection 2025 Jun.
5
Photosystem I and ZIF-8 Interfacing: Entrapment and Immobilization.
Inorg Chem. 2025 Jun 2;64(21):10369-10378. doi: 10.1021/acs.inorgchem.4c05441. Epub 2025 May 20.
8
Functional Analysis of Mature Activin A Produced by Enterokinase in Plant Cells.
Rice (N Y). 2025 Mar 14;18(1):16. doi: 10.1186/s12284-025-00775-7.
9
10
Simulations of pH and thermal effects on SARS-CoV-2 spike glycoprotein.
Front Mol Biosci. 2025 Feb 11;12:1545041. doi: 10.3389/fmolb.2025.1545041. eCollection 2025.

本文引用的文献

1
Adaptations of proteins to cellular and subcellular pH.
J Biol. 2009;8(11):98. doi: 10.1186/jbiol199. Epub 2009 Dec 2.
2
Evidence for the adaptation of protein pH-dependence to subcellular pH.
BMC Biol. 2009 Oct 22;7:69. doi: 10.1186/1741-7007-7-69.
3
Predicting subcellular location of proteins using integrated-algorithm method.
Mol Divers. 2010 Aug;14(3):551-8. doi: 10.1007/s11030-009-9182-4. Epub 2009 Aug 7.
4
Predicting subcellular location of apoptosis proteins based on wavelet transform and support vector machine.
Amino Acids. 2010 Apr;38(4):1201-8. doi: 10.1007/s00726-009-0331-y. Epub 2009 Aug 4.
5
Protein-protein interaction as a predictor of subcellular location.
BMC Syst Biol. 2009 Feb 25;3:28. doi: 10.1186/1752-0509-3-28.
7
BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009.
Nucleic Acids Res. 2009 Jan;37(Database issue):D588-92. doi: 10.1093/nar/gkn820. Epub 2008 Nov 4.
8
Conformational implications of an inversed pH-dependent antibody aggregation.
J Pharm Sci. 2009 Sep;98(9):3031-42. doi: 10.1002/jps.21539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验