Suppr超能文献

学习对进化的影响:一个数学框架。

The influence of learning on evolution: a mathematical framework.

机构信息

Institute AIFB, University of Karlsruhe, Karlsruhe, Germany.

出版信息

Artif Life. 2009 Spring;15(2):227-45. doi: 10.1162/artl.2009.15.2.15204.

Abstract

The Baldwin effect can be observed if phenotypic learning influences the evolutionary fitness of individuals, which can in turn accelerate or decelerate evolutionary change. Evidence for both learning-induced acceleration and deceleration can be found in the literature. Although the results for both outcomes were supported by specific mathematical or simulation models, no general predictions have been achieved so far. Here we propose a general framework to predict whether evolution benefits from learning or not. It is formulated in terms of the gain function, which quantifies the proportional change of fitness due to learning depending on the genotype value. With an inductive proof we show that a positive gain-function derivative implies that learning accelerates evolution, and a negative one implies deceleration under the condition that the population is distributed on a monotonic part of the fitness landscape. We show that the gain-function framework explains the results of several specific simulation models. We also use the gain-function framework to shed some light on the results of a recent biological experiment with fruit flies.

摘要

如果表型学习影响个体的进化适应性,那么鲍德温效应就可以被观察到,这反过来又可以加速或减缓进化变化。文献中既有学习引起的加速也有学习引起的减速的证据。尽管这两种结果都得到了特定的数学或模拟模型的支持,但迄今为止还没有得出一般性的预测。在这里,我们提出了一个通用框架来预测学习是否对进化有益。它是根据增益函数来制定的,增益函数量化了由于学习而导致的适应性的比例变化,具体取决于基因型值。通过归纳证明,我们表明在种群分布在适应度景观的单调部分的情况下,如果增益函数导数为正,则意味着学习加速了进化,如果为负,则意味着减速。我们表明,增益函数框架解释了几个特定模拟模型的结果。我们还使用增益函数框架来阐明最近果蝇生物学实验的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验