Center for Theoretical Biological Physics and Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.
Biochemistry. 2009 Mar 24;48(11):2394-402. doi: 10.1021/bi802293m.
A grand canonical formalism is developed to combine discrete simulations for chemically distinct species in equilibrium. Each simulation is based on a perturbed funneled landscape. The formalism is illustrated using the alkaline-induced transitions of cytochrome c as observed by FTIR spectroscopy and with various other experimental approaches. The grand canonical simulation method accounts for the acid/base chemistry of deprotonation, the inorganic chemistry of heme ligation and misligation, and the minimally frustrated folding energy landscape, thus elucidating the physics of protein folding involved with an acid/base titration of a protein. The formalism combines simulations for each of the relevant chemical species, varying by protonation and ligation states. In contrast to models based on perfectly funneled energy landscapes that contain only contacts found in the native structure, this study introduces "chemical frustration" from deprotonation and misligation that gives rise to many intermediates at alkaline pH. While the nature of these intermediates cannot be easily inferred from available experimental data, this study provides specific structural details of these intermediates, thus extending our understanding of how cytochrome c changes with an increase in pH. The results demonstrate the importance of chemical frustration for understanding biomolecular energy landscapes.
我们开发了一种巨正则形式理论,以结合化学性质不同的物种在平衡状态下的离散模拟。每个模拟都是基于一个受扰的漏斗形景观。我们使用 FTIR 光谱和其他各种实验方法来观察细胞色素 c 的碱性诱导转变为例来说明这个形式理论。巨正则模拟方法考虑了去质子化的酸碱化学、血红素配位和错配的无机化学以及最小受限制的折叠能量景观,从而阐明了与蛋白质酸碱滴定相关的蛋白质折叠物理学。该形式理论结合了对每个相关化学物种的模拟,这些物种的质子化和配位状态不同。与基于完全漏斗形能量景观的模型不同,这些模型仅包含天然结构中发现的接触,本研究从去质子化和错配中引入了“化学受阻”,这导致在碱性 pH 值下产生许多中间体。虽然这些中间体的性质不容易从现有实验数据中推断出来,但本研究提供了这些中间体的具体结构细节,从而扩展了我们对细胞色素 c 随 pH 值增加而变化的理解。结果表明,化学受阻对于理解生物分子能量景观非常重要。