Suppr超能文献

具有质子互变异构的恒pH分子动力学

Constant pH molecular dynamics with proton tautomerism.

作者信息

Khandogin Jana, Brooks Charles L

机构信息

Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, USA.

出版信息

Biophys J. 2005 Jul;89(1):141-57. doi: 10.1529/biophysj.105.061341. Epub 2005 Apr 29.

Abstract

The current article describes a new two-dimensional lambda-dynamics method to include proton tautomerism in continuous constant pH molecular dynamics (CPHMD) simulations. The two-dimensional lambda-dynamics framework is used to devise a tautomeric state titration model for the CPHMD simulations involving carboxyl and histidine residues. Combined with the GBSW implicit solvent model, the new method is tested on titration simulations of blocked histidine and aspartic acid as well as two benchmark proteins, turkey ovomucoid third domain (OMTKY3) and ribonuclease A (RNase A). A detailed analysis of the errors inherent to the CPHMD methodology as well as those due to the underlying solvation model is given. The average absolute error for the computed pKa values in OMTKY3 is 1.0 pK unit. In RNase A the average absolute errors for the carboxyl and histidine residues are 1.6 and 0.6 pK units, respectively. In contrast to the previous work, the new model predicts the correct sign for all the pKa shifts, but one, in the benchmark proteins. The predictions of the tautomeric states of His12 and His48 and the conformational states of His48 and His119 are in agreement with experiment. Based on the simulations of OMTKY3 and RNase A, the current work has demonstrated the capability of the CPHMD technique in revealing pH-coupled conformational dynamics of protein side chains.

摘要

本文介绍了一种新的二维λ动力学方法,用于在连续恒定pH分子动力学(CPHMD)模拟中纳入质子互变异构。二维λ动力学框架用于设计涉及羧基和组氨酸残基的CPHMD模拟的互变异构状态滴定模型。结合GBSW隐式溶剂模型,该新方法在封闭组氨酸和天冬氨酸的滴定模拟以及两种基准蛋白——火鸡卵类粘蛋白第三结构域(OMTKY3)和核糖核酸酶A(RNase A)上进行了测试。对CPHMD方法固有的误差以及由于基础溶剂化模型引起的误差进行了详细分析。OMTKY3中计算得到的pKa值的平均绝对误差为1.0 pK单位。在RNase A中,羧基和组氨酸残基的平均绝对误差分别为1.6和0.6 pK单位。与之前的工作不同,新模型预测了基准蛋白中除一个之外的所有pKa位移的正确符号。His12和His48的互变异构状态以及His48和His119的构象状态的预测与实验结果一致。基于OMTKY3和RNase A的模拟,当前工作证明了CPHMD技术在揭示蛋白质侧链pH耦合构象动力学方面的能力。

相似文献

1
Constant pH molecular dynamics with proton tautomerism.
Biophys J. 2005 Jul;89(1):141-57. doi: 10.1529/biophysj.105.061341. Epub 2005 Apr 29.
3
GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Predictions with Single-pH Simulations.
J Chem Inf Model. 2019 Nov 25;59(11):4821-4832. doi: 10.1021/acs.jcim.9b00754. Epub 2019 Nov 14.
5
The determinants of carboxyl pKa values in turkey ovomucoid third domain.
Proteins. 2004 May 15;55(3):689-704. doi: 10.1002/prot.20032.
6
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Proteins. 2014 Jul;82(7):1319-31. doi: 10.1002/prot.24499. Epub 2014 Jan 15.
8
Generalized Born Based Continuous Constant pH Molecular Dynamics in Amber: Implementation, Benchmarking and Analysis.
J Chem Inf Model. 2018 Jul 23;58(7):1372-1383. doi: 10.1021/acs.jcim.8b00227. Epub 2018 Jul 11.
9
Constant-pH molecular dynamics using continuous titration coordinates.
Proteins. 2004 Sep 1;56(4):738-52. doi: 10.1002/prot.20128.

引用本文的文献

1
Characterizing RNA Oligomers Using Stochastic Titration Constant-pH Metadynamics Simulations.
J Chem Inf Model. 2025 Apr 14;65(7):3568-3580. doi: 10.1021/acs.jcim.4c02185. Epub 2025 Mar 18.
2
Constant pH Simulation with FMM Electrostatics in GROMACS. (B) GPU Accelerated Hamiltonian Interpolation.
J Chem Theory Comput. 2025 Feb 25;21(4):1787-1804. doi: 10.1021/acs.jctc.4c01319. Epub 2025 Feb 7.
3
Constant pH Simulation with FMM Electrostatics in GROMACS. (A) Design and Applications.
J Chem Theory Comput. 2025 Feb 25;21(4):1762-1786. doi: 10.1021/acs.jctc.4c01318. Epub 2025 Feb 7.
4
Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics.
J Phys Chem B. 2024 Nov 28;128(47):11616-11624. doi: 10.1021/acs.jpcb.4c05971. Epub 2024 Nov 12.
5
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.
J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20.
6
A pH-Dependent Coarse-Grained Model for Disordered Proteins: Histidine Interactions Modulate Conformational Ensembles.
J Phys Chem Lett. 2024 Sep 19;15(37):9419-9430. doi: 10.1021/acs.jpclett.4c02314. Epub 2024 Sep 9.
7
Activation of the influenza B M2 proton channel (BM2).
bioRxiv. 2024 Jul 26:2024.07.26.605324. doi: 10.1101/2024.07.26.605324.
8
Histidine in Proteins: pH-Dependent Interplay between π-π, Cation-π, and CH-π Interactions.
J Chem Theory Comput. 2024 Aug 13;20(15):6930-6945. doi: 10.1021/acs.jctc.4c00606. Epub 2024 Jul 22.
10
Constant-pH Simulations with the Polarizable Atomic Multipole AMOEBA Force Field.
J Chem Theory Comput. 2024 Apr 9;20(7):2921-2933. doi: 10.1021/acs.jctc.3c01180. Epub 2024 Mar 20.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Optimized atomic radii for protein continuum electrostatics solvation forces.
Biophys Chem. 1999 Apr 5;78(1-2):89-96. doi: 10.1016/s0301-4622(98)00236-1.
4
Constant pH molecular dynamics in generalized Born implicit solvent.
J Comput Chem. 2004 Dec;25(16):2038-48. doi: 10.1002/jcc.20139.
5
Constant-pH molecular dynamics using continuous titration coordinates.
Proteins. 2004 Sep 1;56(4):738-52. doi: 10.1002/prot.20128.
6
The determinants of carboxyl pKa values in turkey ovomucoid third domain.
Proteins. 2004 May 15;55(3):689-704. doi: 10.1002/prot.20032.
7
Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models.
J Am Chem Soc. 2004 Apr 7;126(13):4167-80. doi: 10.1021/ja039788m.
10
Generalized born model with a simple smoothing function.
J Comput Chem. 2003 Nov 15;24(14):1691-702. doi: 10.1002/jcc.10321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验