Department of Bioengineering and Therapeutic Sciences, and California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4875-80. doi: 10.1073/pnas.1116274109. Epub 2012 Mar 8.
Allostery is a phenomenon that couples effector ligand binding at an allosteric site to a structural and/or dynamic change at a distant regulated site. To study an allosteric transition, we vary the size of the allosteric site and its interactions to construct a series of energy landscapes with pronounced minima corresponding to both the effector bound and unbound crystal structures. We use molecular dynamics to sample these landscapes. The degree of perturbation by the effector, modeled by the size of the allosteric site, provides an order parameter for allostery that allows us to determine how microscopic motions give rise to commonly discussed macroscopic mechanisms: (i) induced fit, (ii) population shift, and (iii) entropy driven. These mechanisms involve decreasing structural differences between the effector bound and unbound populations. A metric (ligand-induced cooperativity) can measure how cooperatively a given regulated site responds to effector binding and therefore what kind of allosteric mechanism is involved. We apply the model to three proteins with experimentally characterized transitions: (i) calmodulin-GFP Ca(2+) sensor protein, (ii) maltose binding protein, and (iii) CSL transcription factor. Remarkably, the model is able to reproduce allosteric motion and predict coupling in a manner consistent with experiment.
变构作用是一种现象,它将效应配体在变构位点的结合与在远处调节位点的结构和/或动力学变化偶联起来。为了研究变构跃迁,我们改变变构位点的大小及其相互作用,构建一系列具有明显最小值的能量景观,这些最小值分别对应于效应配体结合和未结合的晶体结构。我们使用分子动力学来采样这些景观。效应物的扰动程度(通过变构位点的大小来模拟)为变构作用提供了一个序参数,使我们能够确定微观运动如何产生通常讨论的宏观机制:(i)诱导契合,(ii)种群转移,和(iii)熵驱动。这些机制涉及到效应配体结合和未结合的群体之间结构差异的减小。一个度量标准(配体诱导协同性)可以衡量给定的调节位点对效应配体结合的响应的协同程度,因此可以确定涉及哪种变构机制。我们将该模型应用于三个具有实验特征的转变的蛋白质:(i)钙调蛋白-GFP Ca(2+)传感器蛋白,(ii)麦芽糖结合蛋白,和(iii)CSL 转录因子。值得注意的是,该模型能够以与实验一致的方式再现变构运动并预测耦合。