Suppr超能文献

迈向肽分类最优分类器集成的进一步步骤:以HIV蛋白酶为例的案例研究

A further step toward an optimal ensemble of classifiers for peptide classification, a case study: HIV protease.

作者信息

Nanni Loris, Lumini Alessandra

机构信息

DEIS - Università di Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

出版信息

Protein Pept Lett. 2009;16(2):163-7. doi: 10.2174/092986609787316199.

Abstract

The focuses of this work are: to propose a novel method for building an ensemble of classifiers for peptide classification based on substitution matrices; to show the importance to select a proper set of the parameters of the classifiers that build the ensemble of learning systems. The HIV-1 protease cleavage site prediction problem is here studied. The results obtained by a blind testing protocol are reported, the comparison with other state-of-the-art approaches, based on ensemble of classifiers, allows to quantify the performance improvement obtained by the systems proposed in this paper. The simulation based on experimentally determined protease cleavage data has demonstrated the success of these new ensemble algorithms. Particularly interesting it is to note that also if the HIV-1 protease cleavage site prediction problem is considered linearly separable we obtain the best performance using an ensemble of non-linear classifiers.

摘要

这项工作的重点是

提出一种基于替换矩阵构建用于肽分类的分类器集成的新方法;展示选择构建学习系统集成的分类器的适当参数集的重要性。本文研究了HIV-1蛋白酶切割位点预测问题。报告了通过盲测协议获得的结果,与基于分类器集成的其他最新方法进行比较,可以量化本文提出的系统所获得的性能提升。基于实验确定的蛋白酶切割数据的模拟证明了这些新的集成算法的成功。特别值得注意的是,即使认为HIV-1蛋白酶切割位点预测问题是线性可分的,我们使用非线性分类器集成也能获得最佳性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验