Suppr超能文献

线粒体基因组中突变积累的原因。

The causes of mutation accumulation in mitochondrial genomes.

作者信息

Neiman Maurine, Taylor Douglas R

机构信息

Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Proc Biol Sci. 2009 Apr 7;276(1660):1201-9. doi: 10.1098/rspb.2008.1758. Epub 2009 Jan 20.

Abstract

A fundamental observation across eukaryotic taxa is that mitochondrial genomes have a higher load of deleterious mutations than nuclear genomes. Identifying the evolutionary forces that drive this difference is important to understanding the rates and patterns of sequence evolution, the efficacy of natural selection, the maintenance of sex and recombination and the mechanisms underlying human ageing and many diseases. Recent studies have implicated the presumed asexuality of mitochondrial genomes as responsible for their high mutational load. We review the current body of knowledge on mitochondrial mutation accumulation and recombination, and conclude that asexuality, per se, may not be the primary determinant of the high mutation load in mitochondrial DNA (mtDNA). Very little recombination is required to counter mutation accumulation, and recent evidence suggests that mitochondrial genomes do experience occasional recombination. Instead, a high rate of accumulation of mildly deleterious mutations in mtDNA may result from the small effective population size associated with effectively haploid inheritance. This type of transmission is nearly ubiquitous among mitochondrial genomes. We also describe an experimental framework using variation in mating system between closely related species to disentangle the root causes of mutation accumulation in mitochondrial genomes.

摘要

真核生物类群的一个基本观察结果是,线粒体基因组中有害突变的负荷高于核基因组。识别驱动这种差异的进化力量对于理解序列进化的速率和模式、自然选择的效力、性和重组的维持以及人类衰老和许多疾病的潜在机制至关重要。最近的研究表明,线粒体基因组假定的无性状态是其高突变负荷的原因。我们回顾了当前关于线粒体突变积累和重组的知识体系,并得出结论,无性状态本身可能不是线粒体DNA(mtDNA)高突变负荷的主要决定因素。对抗突变积累所需的重组非常少,最近的证据表明线粒体基因组确实偶尔会发生重组。相反,mtDNA中轻度有害突变的高积累率可能是由于与有效单倍体遗传相关的有效种群规模较小所致。这种类型的遗传在几乎所有线粒体基因组中都很普遍。我们还描述了一个实验框架,利用近缘物种之间交配系统的差异来厘清线粒体基因组中突变积累的根本原因。

相似文献

1
The causes of mutation accumulation in mitochondrial genomes.
Proc Biol Sci. 2009 Apr 7;276(1660):1201-9. doi: 10.1098/rspb.2008.1758. Epub 2009 Jan 20.
2
Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing.
Hum Reprod Update. 2015 Sep-Oct;21(5):671-89. doi: 10.1093/humupd/dmv024. Epub 2015 May 14.
3
Inheritance and recombination of mitochondrial genomes in plants, fungi and animals.
New Phytol. 2005 Oct;168(1):39-50. doi: 10.1111/j.1469-8137.2005.01492.x.
4
Evolutionary origin and consequences of uniparental mitochondrial inheritance.
Hum Reprod. 2000 Jul;15 Suppl 2:102-11. doi: 10.1093/humrep/15.suppl_2.102.
5
Uniparental Inheritance Promotes Adaptive Evolution in Cytoplasmic Genomes.
Mol Biol Evol. 2017 Mar 1;34(3):677-691. doi: 10.1093/molbev/msw266.
8
What cost mitochondria? The maintenance of functional mitochondrial DNA within and across generations.
Philos Trans R Soc Lond B Biol Sci. 2014 Jul 5;369(1646):20130438. doi: 10.1098/rstb.2013.0438.
9
A Genome-wide Screen Reveals that Reducing Mitochondrial DNA Polymerase Can Promote Elimination of Deleterious Mitochondrial Mutations.
Curr Biol. 2019 Dec 16;29(24):4330-4336.e3. doi: 10.1016/j.cub.2019.10.060. Epub 2019 Nov 27.
10
Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes.
Genetics. 1998 Aug;149(4):2135-46. doi: 10.1093/genetics/149.4.2135.

引用本文的文献

1
Sensitivity of genome-wide tests for mitonuclear genetic incompatibilities.
bioRxiv. 2025 Jul 4:2025.06.30.662443. doi: 10.1101/2025.06.30.662443.
3
Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists.
PLoS Pathog. 2025 Jan 23;21(1):e1012835. doi: 10.1371/journal.ppat.1012835. eCollection 2025 Jan.
4
The dynamics of loss of heterozygosity events in genomes.
EMBO Rep. 2025 Feb;26(3):602-612. doi: 10.1038/s44319-024-00353-w. Epub 2025 Jan 2.
5
Rapid evolution of mitochondrion-related genes in haplodiploid arthropods.
BMC Biol. 2024 Oct 10;22(1):229. doi: 10.1186/s12915-024-02027-4.
7
Mother's Curse effects on lifespan and aging.
Front Aging. 2024 Mar 8;5:1361396. doi: 10.3389/fragi.2024.1361396. eCollection 2024.
8
Conservation Mitonuclear Replacement: Facilitated mitochondrial adaptation for a changing world.
Evol Appl. 2024 Mar 10;17(3):e13642. doi: 10.1111/eva.13642. eCollection 2024 Mar.
10
Stronger evidence for relaxed selection than adaptive evolution in high-elevation animal mtDNA.
bioRxiv. 2024 Jan 23:2024.01.20.576402. doi: 10.1101/2024.01.20.576402.

本文引用的文献

2
MULLER'S RATCHET AND MUTATIONAL MELTDOWNS.
Evolution. 1993 Dec;47(6):1744-1757. doi: 10.1111/j.1558-5646.1993.tb01266.x.
4
Revealing the hidden complexities of mtDNA inheritance.
Mol Ecol. 2008 Dec;17(23):4925-42. doi: 10.1111/j.1365-294X.2008.03982.x.
7
Mitigating mutational meltdown in mammalian mitochondria.
PLoS Biol. 2008 Feb;6(2):e35. doi: 10.1371/journal.pbio.0060035.
8
A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations.
Science. 2008 Feb 15;319(5865):958-62. doi: 10.1126/science.1147786.
9
Medicine. Sidestepping mutational meltdown.
Science. 2008 Feb 15;319(5865):914-5. doi: 10.1126/science.1154515.
10
A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes.
Nat Genet. 2008 Feb;40(2):249-54. doi: 10.1038/ng.2007.63. Epub 2008 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验