Tretiak Sergei, Isborn Christine M, Niklasson Anders M N, Challacombe Matt
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Chem Phys. 2009 Feb 7;130(5):054111. doi: 10.1063/1.3068658.
Four different numerical algorithms suitable for a linear scaling implementation of time-dependent Hartree-Fock and Kohn-Sham self-consistent field theories are examined. We compare the performance of modified Lanczos, Arooldi, Davidson, and Rayleigh quotient iterative procedures to solve the random-phase approximation (RPA) (non-Hermitian) and Tamm-Dancoff approximation (TDA) (Hermitian) eigenvalue equations in the molecular orbital-free framework. Semiempirical Hamiltonian models are used to numerically benchmark algorithms for the computation of excited states of realistic molecular systems (conjugated polymers and carbon nanotubes). Convergence behavior and stability are tested with respect to a numerical noise imposed to simulate linear scaling conditions. The results single out the most suitable procedures for linear scaling large-scale time-dependent perturbation theory calculations of electronic excitations.
研究了四种适用于含时哈特里-福克和科恩-沙姆自洽场理论线性缩放实现的数值算法。我们比较了改进的兰索斯、阿诺尔迪、戴维森和瑞利商迭代过程在无分子轨道框架下求解随机相位近似(RPA)(非厄米)和塔姆-丹科夫近似(TDA)(厄米)本征值方程的性能。使用半经验哈密顿模型对实际分子系统(共轭聚合物和碳纳米管)激发态计算的算法进行数值基准测试。针对模拟线性缩放条件所施加的数值噪声,测试了收敛行为和稳定性。结果选出了最适合用于电子激发线性缩放大规模含时微扰理论计算的过程。