Suppr超能文献

Querying parse tree database of Medline text to synthesize user-specific biomolecular networks.

作者信息

Tari Luis, Hakenberg Jörg, Gonzalez Graciela, Baral Chitta

机构信息

Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Pac Symp Biocomput. 2009:87-98.

Abstract

Curated biological knowledge of interactions and pathways is largely available from various databases, and network synthesis is a popular method to gain insight into the data. However, such data from curated databases presents a single view of the knowledge to the biologists, and it may not be suitable to researchers' specific needs. On the other hand, Medline abstracts are publicly accessible and encode the necessary information to synthesize different kinds of biological networks. In this paper, we propose a new paradigm in synthesizing biomolecular networks by allowing biologists to create their own networks through queries to a specialized database of Medline abstracts. With this approach, users can specify precisely what kind of information they want in the resulting networks. We demonstrate the feasibility of our approach in the synthesis of gene-drug, gene-disease and protein-protein interaction networks. We show that our approach is capable of synthesizing these networks with high precision and even finds relations that have yet to be curated in public databases. In addition, we demonstrate a scenario of recovering a drug-related pathway using our approach.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验