Suppr超能文献

解析控制药物反应转录组网络的自分泌途径的动态活动。

Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks.

作者信息

Tamada Yoshinori, Araki Hiromitsu, Imoto Seiya, Nagasaki Masao, Doi Atsushi, Nakanishi Yukiko, Tomiyasu Yuki, Yasuda Kaori, Dunmore Ben, Sanders Deborah, Humphreys Sally, Print Cristin, Charnock-Jones D Stephen, Tashiro Kousuke, Kuhara Satoru, Miyano Satoru

机构信息

Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.

出版信息

Pac Symp Biocomput. 2009:251-63.

Abstract

Some drugs affect secretion of secreted proteins (e.g. cytokines) released from target cells, but it remains unclear whether these proteins act in an autocrine manner and directly effect the cells on which the drugs act. In this study, we propose a computational method for testing a biological hypothesis: there exist autocrine signaling pathways that are dynamically regulated by drug response transcriptome networks and control them simultaneously. If such pathways are identified, they could be useful for revealing drug mode-of-action and identifying novel drug targets. By the node-set separation method proposed, dynamic structural changes can be embedded in transcriptome networks that enable us to find master-regulator genes or critical paths at each observed time. We then combine the protein-protein interaction network with the estimated dynamic transcriptome network to discover drug-affected autocrine pathways if they exist. The statistical significance (p-values) of the pathways are evaluated by the meta-analysis technique. The dynamics of the interactions between the transcriptome networks and the signaling pathways will be shown in this framework. We illustrate our strategy by an application using anti-hyperlipidemia drug, Fenofibrate. From over one million protein-protein interaction pathways, we extracted significant 23 autocrine-like pathways with the Bonferroni correction, including VEGF-NRP1-GIPC1-PRKCA-PPARalpha, that is one of the most significant ones and contains PPARalpha, a target of Fenofibrate.

摘要

一些药物会影响靶细胞分泌的分泌蛋白(如细胞因子)的分泌,但这些蛋白是否以自分泌方式起作用并直接影响药物作用的细胞仍不清楚。在本研究中,我们提出了一种计算方法来检验一个生物学假设:存在由药物反应转录组网络动态调节并同时控制它们的自分泌信号通路。如果识别出这样的通路,它们可能有助于揭示药物作用模式并识别新的药物靶点。通过所提出的节点集分离方法,可以将动态结构变化嵌入转录组网络中,这使我们能够在每个观察时间找到主调节基因或关键路径。然后,我们将蛋白质-蛋白质相互作用网络与估计的动态转录组网络相结合,以发现受药物影响的自分泌通路(如果存在)。通过荟萃分析技术评估通路的统计显著性(p值)。转录组网络和信号通路之间相互作用的动态过程将在这个框架中展示。我们通过使用抗高血脂药物非诺贝特的应用来说明我们的策略。在超过一百万个蛋白质-蛋白质相互作用通路中,我们通过Bonferroni校正提取了23条显著的自分泌样通路,包括VEGF-NRP1-GIPC1-PRKCA-PPARalpha,这是最显著的通路之一,并且包含非诺贝特的靶点PPARalpha。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验