Adamczyk Benjamin J, Fernandez Donna E
Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1381, USA.
Plant Physiol. 2009 Apr;149(4):1713-23. doi: 10.1104/pp.109.135806. Epub 2009 Feb 11.
MADS box genes encode transcription factors that play important regulatory roles at various stages in plant development. Transcripts encoding the MIKC*-type (for MADS DNA-binding domain, Intervening domain, Keratin-like domain, and C-terminal domain) factors, a divergent clade, are enriched in mature pollen. Previous studies have shown that these proteins bind DNA as heterodimers, which form between S- and P-class MIKC* proteins. In this study, Arabidopsis (Arabidopsis thaliana) pollen with little or no MIKC* activity was produced by combining strong loss-of-function alleles of the S-class proteins AGAMOUS-LIKE66 (AGL66) and AGL104. Double mutant plants produce pollen but have severely reduced fertility due to reduced pollen viability, delayed germination, and aberrant pollen tube growth. Microarray analysis of the mutant pollen revealed that the loss of MIKC* regulation has a major impact on pollen gene expression. Pollen competition assays involving various combinations of AGL65, AGL66, AGL104, and AGL94 mutant alleles provided genetic evidence that at least three heterodimers (AGL30-AGL104, AGL65-AGL104, and AGL30-AGL66) form and function in at least a partially redundant fashion in pollen. Analyses of transcript abundance in wild-type and mutant pollen indicated that AGL65-containing complexes are likely to be more abundant than the others and that accumulation of AGL30 and AGL94 transcripts increases in response to reductions in MIKC* activity. These results were combined to create a model to describe MIKC* heterodimer contributions in pollen.
MADS盒基因编码转录因子,这些转录因子在植物发育的各个阶段发挥重要的调控作用。编码MIKC型(MADS DNA结合结构域、中间结构域、角蛋白样结构域和C末端结构域)因子(一个不同分支)的转录本在成熟花粉中富集。先前的研究表明,这些蛋白质以异源二聚体形式结合DNA,异源二聚体在S类和P类MIKC蛋白之间形成。在本研究中,通过将S类蛋白AGAMOUS-LIKE66(AGL66)和AGL104的强功能丧失等位基因组合,产生了几乎没有或没有MIKC活性的拟南芥花粉。双突变体植株产生花粉,但由于花粉活力降低、萌发延迟和花粉管生长异常,育性严重降低。对突变花粉的微阵列分析表明,MIKC调控的丧失对花粉基因表达有重大影响。涉及AGL65、AGL66、AGL104和AGL94突变等位基因各种组合的花粉竞争试验提供了遗传学证据,表明至少三种异源二聚体(AGL30-AGL104、AGL65-AGL104和AGL30-AGL66)在花粉中以至少部分冗余的方式形成并发挥作用。对野生型和突变花粉中转录本丰度的分析表明,含有AGL65的复合物可能比其他复合物更丰富,并且AGL30和AGL94转录本的积累会随着MIKC活性的降低而增加。综合这些结果建立了一个模型来描述MIKC异源二聚体在花粉中的作用。