Lim Daniel A, Huang Yin-Cheng, Swigut Tomek, Mirick Anika L, Garcia-Verdugo Jose Manuel, Wysocka Joanna, Ernst Patricia, Alvarez-Buylla Arturo
Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Street M779, San Francisco, California 94143, USA.
Nature. 2009 Mar 26;458(7237):529-33. doi: 10.1038/nature07726. Epub 2009 Feb 11.
Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood. Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively. Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal, the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neuronal differentiation is severely impaired. In Mll1-deficient cells, early proneural Mash1 (also known as Ascl1) and gliogenic Olig2 expression are preserved, but Dlx2, a key downstream regulator of subventricular zone neurogenesis, is not expressed. Overexpression of Dlx2 can rescue neurogenesis in Mll1-deficient cells. Chromatin immunoprecipitation demonstrates that Dlx2 is a direct target of MLL in subventricular zone cells. In differentiating wild-type subventricular zone cells, Mash1, Olig2 and Dlx2 loci have high levels of histone 3 trimethylated at lysine 4 (H3K4me3), consistent with their transcription. In contrast, in Mll1-deficient subventricular zone cells, chromatin at Dlx2 is bivalently marked by both H3K4me3 and histone 3 trimethylated at lysine 27 (H3K27me3), and the Dlx2 gene fails to properly activate. These data support a model in which Mll1 is required to resolve key silenced bivalent loci in postnatal neural precursors to the actively transcribed state for the induction of neurogenesis, but not for gliogenesis.
在整个成年期维持神经发生的表观遗传机制仍知之甚少。三胸节复合物(trxG)和多梳复合物(PcG)基因产物是进化上保守的染色质重塑系统的一部分,分别激活或沉默基因表达。尽管PcG成员Bmi1已被证明是出生后神经干细胞自我更新所必需的,但trxG基因的作用仍然未知。在这里,我们表明trxG成员Mll1(混合谱系白血病1)是小鼠出生后大脑神经发生所必需的。Mll1缺陷的脑室下区神经干细胞存活、增殖并有效分化为胶质谱系;然而,神经元分化严重受损。在Mll1缺陷的细胞中,早期神经前体Mash1(也称为Ascl1)和生成胶质细胞的Olig2表达得以保留,但脑室下区神经发生的关键下游调节因子Dlx2不表达。Dlx2的过表达可以挽救Mll1缺陷细胞中的神经发生。染色质免疫沉淀表明Dlx2是脑室下区细胞中MLL的直接靶标。在分化的野生型脑室下区细胞中,Mash1、Olig2和Dlx2基因座具有高水平的赖氨酸4三甲基化组蛋白3(H3K4me3),与其转录一致。相比之下,在Mll1缺陷的脑室下区细胞中,Dlx2处的染色质同时被H3K4me3和赖氨酸27三甲基化组蛋白3(H3K27me3)双价标记,并且Dlx2基因未能正确激活。这些数据支持了一个模型,即Mll1是将出生后神经前体细胞中关键的沉默双价基因座解析为活跃转录状态以诱导神经发生所必需的,但不是胶质发生所必需的。