Yang Chunzhong, Glover John R
Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
PLoS One. 2009;4(2):e4459. doi: 10.1371/journal.pone.0004459. Epub 2009 Feb 12.
The ssrA gene encodes tmRNA that, together with a specialized tmRNA-binding protein, SmpB, forms part of a ribonucleoprotein complex, provides a template for the resumption of translation elongation, subsequent termination and recycling of stalled ribosomes. In addition, the mRNA-like domain of tmRNA encodes a peptide that tags polypeptides derived from stalled ribosomes for degradation. Streptomyces are unique bacteria that undergo a developmental cycle culminating at sporulation that is at least partly controlled at the level of translation elongation by the abundance of a rare tRNA that decodes UUA codons found in a relatively small number of open reading frames prompting us to examine the role of tmRNA in S. coelicolor. Using a temperature sensitive replicon, we found that the ssrA gene could be disrupted only in cells with an extra-copy wild type gene but not in wild type cells or cells with an extra-copy mutant tmRNA (tmRNA(DD)) encoding a degradation-resistant tag. A cosmid-based gene replacement method that does not include a high temperature step enabled us to disrupt both the ssrA and smpB genes separately and at the same time suggesting that the tmRNA tagging system may be required for cell survival under high temperature. Indeed, mutant cells show growth and sporulation defects at high temperature and under optimal culture conditions. Interestingly, even though these defects can be completely restored by wild type genes, the DeltassrA strain was only partially corrected by tmRNA(DD). In addition, wildtype tmRNA can restore the hygromycin-resistance to DeltassrA cells while tmRNA(DD) failed to do so suggesting that degradation of aberrant peptides is important for antibiotic resistance. Overall, these results suggest that the tmRNA tagging system plays important roles during Streptomyces growth and sporulation under both normal and stress conditions.
ssrA基因编码tmRNA,tmRNA与一种特殊的tmRNA结合蛋白SmpB一起,构成核糖核蛋白复合体的一部分,为翻译延伸的恢复、随后的终止以及停滞核糖体的循环利用提供模板。此外,tmRNA的mRNA样结构域编码一种肽,该肽标记源自停滞核糖体的多肽以便降解。链霉菌是独特的细菌,经历一个以孢子形成为 culminating的发育周期,该过程至少部分地在翻译延伸水平上受一种稀有tRNA丰度的控制,这种稀有tRNA解码在相对少数开放阅读框中发现的UUA密码子,这促使我们研究tmRNA在天蓝色链霉菌中的作用。使用温度敏感复制子,我们发现ssrA基因只能在具有额外拷贝野生型基因的细胞中被破坏,而不能在野生型细胞或具有额外拷贝突变tmRNA(tmRNA(DD))的细胞中被破坏,tmRNA(DD)编码一种抗降解标签。一种不包括高温步骤的基于黏粒的基因替换方法使我们能够分别和同时破坏ssrA和smpB基因,这表明tmRNA标记系统可能是细胞在高温下存活所必需的。事实上,突变细胞在高温和最佳培养条件下表现出生长和孢子形成缺陷。有趣的是,尽管这些缺陷可以被野生型基因完全恢复,但ΔssrA菌株仅被tmRNA(DD)部分校正。此外,野生型tmRNA可以恢复ΔssrA细胞对潮霉素的抗性,而tmRNA(DD)则不能,这表明异常肽的降解对抗生素抗性很重要。总体而言,这些结果表明tmRNA标记系统在正常和应激条件下链霉菌的生长和孢子形成过程中发挥重要作用。