Institut Pasteur, Unité P. Pathogenèse de Helicobacter, 28 rue du Dr. Roux, 75724 Paris Cedex 15 France.
BMC Microbiol. 2010 Mar 26;10:91. doi: 10.1186/1471-2180-10-91.
Trans-translation is a ubiquitous bacterial quality control-mechanism for both transcription and translation. With its two major partners, SsrA a small stable RNA and the SmpB protein, it promotes the release of ribosomes stalled on defective mRNAs and directs the corresponding truncated proteins to degradation pathways. We have recently shown that trans-translation is an essential function in the gastric pathogen Helicobacter pylori. Our results suggested that some properties of the H. pylori trans-translation machinery distinguishes it from the well known system in E. coli. Therefore, we decided to test the functionality of the SmpB and SsrA molecules of H. pylori in the E. coli heterologous system using two established phenotypic tests.
H. pylori SmpB protein was found to successfully restore the E. coli DeltasmpB mutant growth defect and its capacity to propagate lambdaimmP22 phage. We showed that in E. coli, H. pylori SsrA (Hp-SsrA) was stably expressed and maturated and that this molecule could restore wild type growth to the E. coli DeltassrA mutant. Hp-SsrA mutants affected in the ribosome rescue function were not able to restore normal growth to E. coli DeltassrA supporting a major role of ribosome rescue in this phenotype. Surprisingly, Hp-SsrA did not restore the phage lambdaimmP22 propagation capacity to the E. coli DeltassrA mutant.
These data suggest an additional role of the tag sequence that presents specific features in Hp-SsrA. Our interpretation is that a secondary role of protein tagging in phage propagation is revealed by heterologous complementation because ribosome rescue is less efficient. In conclusion, tmRNAs present in all eubacteria, have coevolved with the translational machinery of their host and possess specific determinants that can be revealed by heterologous complementation studies.
转译是一种普遍存在的细菌质量控制机制,用于转录和翻译。它有两个主要伙伴,SsrA 是一种小的稳定 RNA 和 SmpB 蛋白,它促进了在有缺陷的 mRNA 上停滞的核糖体的释放,并将相应的截断蛋白引导到降解途径中。我们最近表明,转译是胃病原体幽门螺杆菌的一个必需功能。我们的结果表明,幽门螺杆菌转译机制的一些特性使其有别于大肠杆菌中众所周知的系统。因此,我们决定使用两种已建立的表型测试来测试幽门螺杆菌的 SmpB 和 SsrA 分子在大肠杆菌异源系统中的功能。
发现幽门螺杆菌 SmpB 蛋白成功地恢复了大肠杆菌 DeltasmpB 突变体的生长缺陷及其繁殖 lambdaimmP22 噬菌体的能力。我们表明,在大肠杆菌中,幽门螺杆菌 SsrA(Hp-SsrA)稳定表达并成熟,并且该分子可以恢复大肠杆菌 DeltassrA 突变体的野生型生长。在核糖体拯救功能中受到影响的 Hp-SsrA 突变体无法恢复大肠杆菌 DeltassrA 的正常生长,支持核糖体拯救在这种表型中起主要作用。令人惊讶的是,Hp-SsrA 并没有恢复噬菌体 lambdaimmP22 的繁殖能力大肠杆菌 DeltassrA 突变体。
这些数据表明标签序列在 Hp-SsrA 中具有特定特征,具有额外的作用。我们的解释是,通过异源互补,蛋白质标记在噬菌体繁殖中的次要作用被揭示出来,因为核糖体拯救效率较低。总之,所有真细菌中都存在 tmRNAs,它们与宿主的翻译机制共同进化,并具有可以通过异源互补研究揭示的特定决定因素。