Suppr超能文献

检测生物节律的变化:一种针对傅里叶变换数据的多变量排列检验方法。

Detecting change in biological rhythms: a multivariate permutation test approach to Fourier-transformed data.

作者信息

Blackford Jennifer Urbano, Salomon Ronald M, Waller Niels G

机构信息

Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA.

出版信息

Chronobiol Int. 2009 Feb;26(2):258-81. doi: 10.1080/07420520902772221.

Abstract

Treatment-related changes in neurobiological rhythms are of increasing interest to psychologists, psychiatrists, and biological rhythms researchers. New methods for analyzing change in rhythms are needed, as most common methods disregard the rich complexity of biological processes. Large time series data sets reflect the intricacies of underlying neurobiological processes, but can be difficult to analyze. We propose the use of Fourier methods with multivariate permutation test (MPT) methods for analyzing change in rhythms from time series data. To validate the use of MPT for Fourier-transformed data, we performed Monte Carlo simulations and compared statistical power and family-wise error for MPT to Bonferroni-corrected and uncorrected methods. Results show that MPT provides greater statistical power than Bonferroni-corrected tests, while appropriately controlling family-wise error. We applied this method to human, pre- and post-treatment, serially-sampled neurotransmitter data to confirm the utility of this method using real data. Together, Fourier with MPT methods provides a statistically powerful approach for detecting change in biological rhythms from time series data.

摘要

神经生物学节律中与治疗相关的变化越来越受到心理学家、精神科医生和生物节律研究人员的关注。由于大多数常用方法忽略了生物过程的丰富复杂性,因此需要新的节律变化分析方法。大型时间序列数据集反映了潜在神经生物学过程的复杂性,但可能难以分析。我们建议使用傅里叶方法和多元排列检验(MPT)方法来分析时间序列数据中的节律变化。为了验证MPT在傅里叶变换数据中的应用,我们进行了蒙特卡罗模拟,并将MPT的统计功效和家族性错误与Bonferroni校正和未校正方法进行了比较。结果表明,MPT比Bonferroni校正检验具有更大的统计功效,同时能适当控制家族性错误。我们将此方法应用于人类治疗前和治疗后的连续采样神经递质数据,以使用真实数据确认该方法的实用性。总之,傅里叶方法与MPT方法相结合,为从时间序列数据中检测生物节律变化提供了一种统计功效强大的方法。

相似文献

3
Inference on periodicity of circadian time series.推断 circadian 时间序列的周期性。
Biostatistics. 2013 Sep;14(4):792-806. doi: 10.1093/biostatistics/kxt020. Epub 2013 Jun 6.
4
Integration of biological clocks and rhythms.生物节律与生物钟的整合。
Compr Physiol. 2012 Apr;2(2):1213-39. doi: 10.1002/cphy.c100088.
5
Signal analysis of behavioral and molecular cycles.行为和分子周期的信号分析
BMC Neurosci. 2002;3:1. doi: 10.1186/1471-2202-3-1. Epub 2002 Jan 18.
6
Biological rhythms and mood disorders.生物节律与情绪障碍。
Dialogues Clin Neurosci. 2012 Dec;14(4):369-79. doi: 10.31887/DCNS.2012.14.4/psalvatore.
8
Circadian rhythms.
Curr Opin Neurobiol. 1993 Dec;3(6):1005-10. doi: 10.1016/0959-4388(93)90174-w.
9
Circadian clocks limited by noise.受噪声限制的生物钟。
Nature. 2000 Jan 20;403(6767):267-8. doi: 10.1038/35002258.
10
Why life oscillates--biological rhythms and health.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:424-8. doi: 10.1109/IEMBS.2006.259562.

引用本文的文献

本文引用的文献

2
A power primer.强力底漆。
Psychol Bull. 1992 Jul;112(1):155-9. doi: 10.1037//0033-2909.112.1.155.
7
What's wrong with Bonferroni adjustments.邦费罗尼校正法有什么问题。
BMJ. 1998 Apr 18;316(7139):1236-8. doi: 10.1136/bmj.316.7139.1236.
8
Electroencephalographic sleep profiles before and after cognitive behavior therapy of depression.
Arch Gen Psychiatry. 1998 Feb;55(2):138-44. doi: 10.1001/archpsyc.55.2.138.
9
Control of familywise errors in multiple endpoint assessments via stepwise permutation tests.
Stat Med. 1996 Jun 15;15(11):1107-21. doi: 10.1002/(SICI)1097-0258(19960615)15:11<1107::AID-SIM222>3.0.CO;2-T.
10
An alternative method for significance testing of waveform difference potentials.
Psychophysiology. 1993 Sep;30(5):518-24. doi: 10.1111/j.1469-8986.1993.tb02075.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验