Blackford Jennifer Urbano, Salomon Ronald M, Waller Niels G
Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA.
Chronobiol Int. 2009 Feb;26(2):258-81. doi: 10.1080/07420520902772221.
Treatment-related changes in neurobiological rhythms are of increasing interest to psychologists, psychiatrists, and biological rhythms researchers. New methods for analyzing change in rhythms are needed, as most common methods disregard the rich complexity of biological processes. Large time series data sets reflect the intricacies of underlying neurobiological processes, but can be difficult to analyze. We propose the use of Fourier methods with multivariate permutation test (MPT) methods for analyzing change in rhythms from time series data. To validate the use of MPT for Fourier-transformed data, we performed Monte Carlo simulations and compared statistical power and family-wise error for MPT to Bonferroni-corrected and uncorrected methods. Results show that MPT provides greater statistical power than Bonferroni-corrected tests, while appropriately controlling family-wise error. We applied this method to human, pre- and post-treatment, serially-sampled neurotransmitter data to confirm the utility of this method using real data. Together, Fourier with MPT methods provides a statistically powerful approach for detecting change in biological rhythms from time series data.
神经生物学节律中与治疗相关的变化越来越受到心理学家、精神科医生和生物节律研究人员的关注。由于大多数常用方法忽略了生物过程的丰富复杂性,因此需要新的节律变化分析方法。大型时间序列数据集反映了潜在神经生物学过程的复杂性,但可能难以分析。我们建议使用傅里叶方法和多元排列检验(MPT)方法来分析时间序列数据中的节律变化。为了验证MPT在傅里叶变换数据中的应用,我们进行了蒙特卡罗模拟,并将MPT的统计功效和家族性错误与Bonferroni校正和未校正方法进行了比较。结果表明,MPT比Bonferroni校正检验具有更大的统计功效,同时能适当控制家族性错误。我们将此方法应用于人类治疗前和治疗后的连续采样神经递质数据,以使用真实数据确认该方法的实用性。总之,傅里叶方法与MPT方法相结合,为从时间序列数据中检测生物节律变化提供了一种统计功效强大的方法。