Suppr超能文献

用于高频超声换能器应用的氧化铝/环氧树脂纳米复合匹配层。

Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application.

作者信息

Zhou Qifa, Cha Jung Hyui, Huang Yuhong, Zhang Rui, Cao Wenwu, Shung K Kirk

机构信息

Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, CA, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):213-9. doi: 10.1109/TUFFC.2009.1021.

Abstract

Mismatch of acoustic impedance at the interface between a piezoelectric transducer and the medium to be probed will substantially reduce the amount of ultrasound energy being transmitted into the medium. Therefore, matching layer is a critical component of an ultrasonic transducer. A spin-coating process was used to fabricate alumina/polymer nanocomposite films with alumina volume fractions ranging from 14 to 32%. The particle size of alumina is in the range of 10 to 40 nm. The thicknesses of the matching layer can be controlled by the spinning speed and the concentration of solution. Acoustic impedances of these nanocomposite matching layers are in the range of 2.8 to 5.1 MRayls with different alumina contents, which meet the matching layer requirement. The attenuation of a nanocomposite matching layer with smooth surface is about 15 dB/mm at 40 MHz. The pulse-echo spectrum and frequency spectrum of a high-frequency transducer using this nanocomposite matching layer are reported.

摘要

压电换能器与被探测介质之间界面处的声阻抗失配会大幅降低传输到介质中的超声能量。因此,匹配层是超声换能器的关键部件。采用旋涂工艺制备了氧化铝体积分数在14%至32%之间的氧化铝/聚合物纳米复合薄膜。氧化铝的粒径在10至40纳米范围内。匹配层的厚度可通过旋转速度和溶液浓度来控制。这些纳米复合匹配层的声阻抗在2.8至5.1兆瑞利之间,不同氧化铝含量均满足匹配层要求。表面光滑的纳米复合匹配层在40兆赫兹时的衰减约为15分贝/毫米。报道了使用这种纳米复合匹配层的高频换能器的脉冲回波频谱和频率频谱。

相似文献

1
Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):213-9. doi: 10.1109/TUFFC.2009.1021.
2
Tunable high acoustic impedance alumina epoxy composite matching for high frequency ultrasound transducer.
Ultrasonics. 2021 Sep;116:106506. doi: 10.1016/j.ultras.2021.106506. Epub 2021 Jun 29.
3
FPCB as an Acoustic Matching Layer for 1D Linear Ultrasound Transducer Arrays.
Sensors (Basel). 2022 Jul 25;22(15):5557. doi: 10.3390/s22155557.
4
Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl.
Ultrasonics. 2010 Mar;50(3):363-6. doi: 10.1016/j.ultras.2009.08.012. Epub 2009 Sep 1.
5
SU-8-based nanocomposites for acoustical matching layer.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jul;56(7):1483-9. doi: 10.1109/TUFFC.2009.1204.
7
High frequency properties of passive materials for ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):78-84. doi: 10.1109/58.895911.
9
Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
Ultrasonics. 2014 Feb;54(2):614-20. doi: 10.1016/j.ultras.2013.08.015. Epub 2013 Aug 30.
10
Acoustic properties of alumina colloidal/polymer nano-composite film on silicon.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):467-9. doi: 10.1109/tuffc.2007.270.

引用本文的文献

3
FPCB as an Acoustic Matching Layer for 1D Linear Ultrasound Transducer Arrays.
Sensors (Basel). 2022 Jul 25;22(15):5557. doi: 10.3390/s22155557.
4
Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature .
Biomed Opt Express. 2021 Apr 28;12(5):2996-3007. doi: 10.1364/BOE.426366. eCollection 2021 May 1.
5
Modeling and Design of a Rear-Mounted Underwater Projector Using Equivalent Circuits.
Sensors (Basel). 2020 Dec 10;20(24):7085. doi: 10.3390/s20247085.
6
A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers.
Sensors (Basel). 2020 Jul 21;20(14):4051. doi: 10.3390/s20144051.
7
Optical-Resolution Photoacoustic Microscopy Using Transparent Ultrasound Transducer.
Sensors (Basel). 2019 Dec 11;19(24):5470. doi: 10.3390/s19245470.
8
Magnesium Alloy Matching Layer for High-Performance Transducer Applications.
Sensors (Basel). 2018 Dec 14;18(12):4424. doi: 10.3390/s18124424.
9
Piezoelectric single crystals for ultrasonic transducers in biomedical applications.
Prog Mater Sci. 2014 Oct 1;66:87-111. doi: 10.1016/j.pmatsci.2014.06.001.
10
PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.
Sens Actuators A Phys. 2012 Jun;179:121-124. doi: 10.1016/j.sna.2012.02.031.

本文引用的文献

1
PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):668-75. doi: 10.1109/tuffc.2007.290.
2
Acoustic properties of alumina colloidal/polymer nano-composite film on silicon.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):467-9. doi: 10.1109/tuffc.2007.270.
3
Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1548-57. doi: 10.1109/tuffc.2003.1251138.
4
High frequency properties of passive materials for ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):78-84. doi: 10.1109/58.895911.
5
Advances in ultrasound biomicroscopy.
Ultrasound Med Biol. 2000 Jan;26(1):1-27. doi: 10.1016/s0301-5629(99)00096-4.
6
Improved system for sonographic imaging and biometry of the cornea.
J Ultrasound Med. 1997 Feb;16(2):117-24. doi: 10.7863/jum.1997.16.2.117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验