Radziszewska Anna, Schroer Stephanie A, Choi Diana, Tajmir Panteha, Radulovich Nikolina, Ho James C, Wang Linyuan, Liadis Nicole, Hakem Razqallah, Tsao Ming-Sound, Penn Linda Z, Evan Gerard I, Woo Minna
Department of Medical Biophysics and Institute of Medical Science, Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2M9, Canada.
J Biol Chem. 2009 Apr 17;284(16):10947-56. doi: 10.1074/jbc.M806960200. Epub 2009 Feb 12.
c-Myc is a powerful trigger of beta-cell apoptosis, proliferation, and dedifferentiation in rodent islets in vivo. In a transgenic mouse model, c-Myc induction causes rapid beta-cell apoptosis and overt diabetes. When suppression of apoptosis is achieved by overexpression of Bcl-x(L) in an inducible model of c-Myc activation, a full spectrum of tumor development, including distant metastasis, occurs. Caspase-3 is a key pro-apoptotic protein involved in the execution phase of multiple apoptotic pathways. To test whether caspase-3 is an essential mediator of apoptosis in this model of tumorigenesis, we generated caspase-3 knock-out mice containing the inducible c-myc transgene (c-Myc(+)Casp3(-/-)). In contrast to Bcl-x(L)-overexpressing c-Myc(+) mice, c-Myc(+)Casp3(-/-) mice remained euglycemic for up to 30 days of c-Myc activation, and there was no evidence of tumor formation. Interestingly, caspase-3 deletion also led to the suppression of proliferation, perhaps through regulation of the cell cycle inhibitory protein p27, suggesting a possible mechanism for maintaining a balance between suppression of apoptosis and excessive proliferation in the context of c-Myc activation. Additionally, c-Myc-activated Casp3(-/-) mice were protected from streptozotocin-induced diabetes. Our studies demonstrate that caspase-3 deletion confers protection from c-Myc-induced apoptosis and diabetes development without unwanted tumorigenic effects. These results may lead to further elucidation of the mechanisms of c-Myc biology relevant to beta-cells, which may result in novel therapeutic strategies for diabetes.
c-Myc是啮齿动物胰岛体内β细胞凋亡、增殖和去分化的强大触发因素。在转基因小鼠模型中,c-Myc的诱导会导致β细胞快速凋亡和明显的糖尿病。在c-Myc激活的诱导模型中,通过Bcl-x(L)的过表达实现凋亡抑制时,会发生包括远处转移在内的全谱肿瘤发展。半胱天冬酶-3是一种关键的促凋亡蛋白,参与多种凋亡途径的执行阶段。为了测试半胱天冬酶-3是否是该肿瘤发生模型中凋亡的必需介质,我们构建了含有可诱导c-myc转基因的半胱天冬酶-3基因敲除小鼠(c-Myc(+)Casp3(-/-))。与过表达Bcl-x(L)的c-Myc(+)小鼠不同,c-Myc(+)Casp3(-/-)小鼠在c-Myc激活长达30天的时间内血糖仍保持正常,且没有肿瘤形成的证据。有趣的是,半胱天冬酶-3的缺失也导致了增殖的抑制,可能是通过调节细胞周期抑制蛋白p27实现的,这提示了在c-Myc激活的情况下维持凋亡抑制和过度增殖之间平衡的一种可能机制。此外,c-Myc激活的Casp3(-/-)小鼠对链脲佐菌素诱导的糖尿病具有抵抗力。我们的研究表明,半胱天冬酶-3的缺失可保护小鼠免受c-Myc诱导的凋亡和糖尿病发展,且无不良致瘤作用。这些结果可能会进一步阐明与β细胞相关的c-Myc生物学机制,这可能会带来糖尿病的新治疗策略。