Suppr超能文献

利用基因小鼠模型研究中枢神经系统中自噬的生物学和病理学。

Using genetic mouse models to study the biology and pathology of autophagy in the central nervous system.

作者信息

Yue Zhenyu, Holstein Gay R, Chait Brian T, Wang Qing Jun

机构信息

Department of Neurology, Mount Sinai School of Medicine, New York, New York, USA.

出版信息

Methods Enzymol. 2009;453:159-80. doi: 10.1016/S0076-6879(08)04008-1.

Abstract

Autophagy is a cellular self-eating process that plays an important role in neuroprotection as well as neuronal injury and death. The detailed pathway of autophagy in these two opposing functions remains to be elucidated. Neurons are highly specialized, postmitotic cells that are typically composed of a soma (cell body), a dendritic tree, and an axon. Here, we describe methods for studying autophagy in the central nervous system (CNS). The first involves the use of recently developed transgenic mice expressing the fluorescent autophagosome marker, GFP-LC3. Although CNS neurons show little evidence for the presence of GFP-LC3-containing puncta under normal conditions, under pathological conditions such neurons exhibit many GFP-LC3 puncta. The onset and density of GFP-LC3 puncta have been found to vary significantly in the subcompartments of the affected neurons. These studies suggest that autophagy is distinctly regulated in CNS neurons and that neuronal autophagy can be highly compartmentalized. While transgenic mice expressing GFP-LC3 are a valuable tool for assessing autophagic activity in the CNS, caution needs to be taken when interpreting results solely based on the presence of GFP-LC3 puncta. Therefore, traditional ultrastructural analysis using electron microscopy remains an important tool for studying autophagosomes in vivo. Additional reporters of autophagy are constantly being sought. For example, recently a selective substrate of autophagy p62/SQSTM1 has been shown to be specifically regulated by autophagic activity. Therefore, p62/SQSTM1 protein levels can be used as an additional reporter for autophagic activity.

摘要

自噬是一种细胞自我吞噬过程,在神经保护以及神经元损伤和死亡中发挥重要作用。自噬在这两种相反功能中的详细途径仍有待阐明。神经元是高度特化的、不再进行有丝分裂的细胞,通常由胞体(细胞体)、树突和轴突组成。在此,我们描述了研究中枢神经系统(CNS)中自噬的方法。第一种方法涉及使用最近开发的表达荧光自噬体标记物GFP-LC3的转基因小鼠。尽管在正常条件下,中枢神经系统神经元几乎没有证据表明存在含GFP-LC3的斑点,但在病理条件下,此类神经元会出现许多GFP-LC3斑点。已发现GFP-LC3斑点的出现和密度在受影响神经元的亚区中存在显著差异。这些研究表明,自噬在中枢神经系统神经元中受到明显调节,并且神经元自噬可以高度区域化。虽然表达GFP-LC3的转基因小鼠是评估中枢神经系统自噬活性的有价值工具,但仅根据GFP-LC3斑点的存在来解释结果时需要谨慎。因此,使用电子显微镜进行传统的超微结构分析仍然是研究体内自噬体的重要工具。人们一直在寻找其他自噬报告分子。例如,最近已证明自噬的一种选择性底物p62/SQSTM1受自噬活性特异性调节。因此,p62/SQSTM1蛋白水平可作为自噬活性的另一种报告分子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验