Genetics Division, GlaxoSmithKline, Harlow, UK.
Genet Epidemiol. 2009 Nov;33(7):559-68. doi: 10.1002/gepi.20408.
p-Values from tests of significance can be combined using the Sidák correction (or the closely related Bonferroni correction) or Fisher's method, but both these methods require that the p-values combined be independent when all null hypotheses tested are true. In this paper adjustments to these methods are proposed, using a new eigenvalue-based measure of the effective number of independent tests to which the actual tests performed are equivalent, and are compared with adjustments proposed by previous authors. The adjusted methods are evaluated using a sample of 726 Alzheimer's disease (AD) cases and 707 group-matched controls, genotyped at 84,975 single-nucleotide polymorphism loci in 2,000 randomly chosen genes. The tests for genetic association with AD at loci within each gene are combined. The number of loci tested per gene varies from 2 to 994. The adjusted combined p-values agree well with the significance of the combined p-values determined empirically by random permutation of the data (Sidák correction: r=0.990; Fisher's method: r=0.994). This indicates that the combined p-values can be used to assess the relative strength of evidence for association of these genes with AD. The adjustment proposed here is a refinement of that of Nyholt ([2004] Am. J. Hum. Genet. 74:765-769), giving improved agreement with the results of random permutation. The improvement obtained is similar to that given by the refinement proposed by Li and Ji ([2005] Heredity 95:221-227). It is concluded that the concept of an effective number of tests is a valid approximation that allows p-values to be combined in a highly informative way.
可使用 Sidák 校正(或密切相关的 Bonferroni 校正)或 Fisher 方法合并检验显著水平的 p 值,但这两种方法都要求当所有检验的零假设都为真时,组合的 p 值是独立的。在本文中,使用一种基于新特征值的有效独立检验数量的度量方法,对这些方法进行了调整,该方法等效于实际进行的检验,并且与以前的作者提出的调整方法进行了比较。使用在 2000 个随机选择的基因中 84975 个单核苷酸多态性位点上进行基因分型的 726 例阿尔茨海默病(AD)病例和 707 例组匹配对照的样本,对调整后的方法进行了评估。对每个基因内的 AD 遗传关联进行了测试。每个基因的检验位点数量从 2 到 994 不等。调整后的联合 p 值与通过数据随机置换确定的联合 p 值的显著性非常吻合(Sidák 校正:r=0.990;Fisher 方法:r=0.994)。这表明,联合 p 值可用于评估这些基因与 AD 关联的相对证据强度。这里提出的调整是对 Nyholt([2004] Am. J. Hum. Genet. 74:765-769)的调整的改进,与随机置换的结果更加吻合。所获得的改进与 Li 和 Ji([2005] Heredity 95:221-227)提出的改进类似。因此,可以得出结论,有效检验数量的概念是一种有效的近似方法,可以以高度信息丰富的方式组合 p 值。