Yeung Ming Wai, van de Leur Rutger R, Benjamins Jan Walter, Vessies Melle B, Ruijsink Bram, Puyol-Antón Esther, van Tintelen J Peter, Verweij Niek, van Es René, van der Harst Pim
University of Groningen, University Medical Center Groningen, Department of Cardiology, 9700 RB Groningen, the Netherlands.
Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
iScience. 2025 Jul 28;28(8):113226. doi: 10.1016/j.isci.2025.113226. eCollection 2025 Aug 15.
Conventional approaches to analyzing electrocardiograms (ECG) in discrete parameters (such as the PR interval) ignored the high dimensionality of data omitted subtle but relevant information. We applied a variational auto-encoder to learn the underlying distributions of the ECG of 41,927 UK Biobank participants, generating 32-dimensional representation (latent factors). The latent factors showed correlations to conventional ECG parameters and strong associations to cardiac phenotypes estimated from magnetic resonance imaging. We found definitive associations of the latent factors to conduction, rhythm, and structural disorders (all < 4.51 × 10) and additionally value in mortality prediction. Genome wide association study (GWAS) of the latent factors, revealed 170 genetic loci with 29 not previously associated with electrocardiographic phenotypes. Further characterization of the genetic signals suggested involvement in cardiac development, contractility, and electrophysiology. Our results supported that the deep representation learning of 12-lead ECG could provide clinically meaningful and interpretable insights into cardiovascular biology and health.
传统的离散参数(如PR间期)分析心电图(ECG)的方法忽略了数据的高维度,遗漏了细微但相关的信息。我们应用变分自编码器来学习41927名英国生物银行参与者的心电图潜在分布,生成32维表示(潜在因子)。这些潜在因子与传统心电图参数相关,并与磁共振成像估计的心脏表型有很强的关联。我们发现潜在因子与传导、节律和结构紊乱有明确的关联(均<4.51×10),并且在死亡率预测中也有价值。对潜在因子的全基因组关联研究(GWAS)揭示了170个基因位点,其中29个以前未与心电图表型相关。对这些遗传信号的进一步表征表明其参与了心脏发育、收缩性和电生理学。我们的结果支持12导联心电图的深度表示学习可以为心血管生物学和健康提供具有临床意义和可解释的见解。