Suppr超能文献

神经肌肉延迟对控制接触转换的影响。

Effects of neuromuscular lags on controlling contact transitions.

作者信息

Venkadesan Madhusudhan, Valero-Cuevas Francisco J

机构信息

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1163-79. doi: 10.1098/rsta.2008.0261.

Abstract

We present a numerical exploration of contact transitions with the fingertip. When picking up objects our fingertips must make contact at specific locations, and-upon contact-maintain posture while producing well-directed force vectors. However, the joint torques for moving the fingertip towards a surface (tau(m)) are different from those for producing static force vectors (tau(f)). We previously described the neural control of such abrupt transitions in humans, and found that unavoidable errors arise because sensorimotor time delays and lags prevent an instantaneous switch between different torques. Here, we use numerical optimization on a finger model to reveal physical bounds for controlling such rapid contact transitions. Resembling human data, it is necessary to anticipatorily switch joint torques to tau(f )at about 30 ms before contact to minimize the initial misdirection of the fingertip force vector. This anticipatory strategy arises in our deterministic model from neuromuscular lags, and not from optimizing for robustness to noise/uncertainties. Importantly, the optimal solution also leads to a trade-off between the speed of force magnitude increase versus the accuracy of initial force direction. This is an alternative to prevailing theories that propose multiplicative noise in muscles as the driver of speed-accuracy trade-offs. We instead find that the speed-accuracy trade-off arises solely from neuromuscular lags. Finally, because our model intentionally uses idealized assumptions, its agreement with human data suggests that the biological system is controlled in a way that approaches the physical boundaries of performance.

摘要

我们展示了对指尖接触转换的数值探索。在抓取物体时,我们的指尖必须在特定位置进行接触,并在接触时保持姿势,同时产生方向良好的力矢量。然而,将指尖移向表面的关节扭矩(τ(m))与产生静态力矢量的关节扭矩(τ(f))不同。我们之前描述了人类中这种突然转换的神经控制,并发现由于感觉运动时间延迟和滞后,不可避免地会出现误差,从而阻止了不同扭矩之间的瞬间切换。在这里,我们在手指模型上使用数值优化来揭示控制这种快速接触转换的物理界限。与人类数据相似,有必要在接触前约30毫秒将关节扭矩预期性地切换到τ(f),以最小化指尖力矢量的初始错误方向。这种预期策略在我们的确定性模型中源于神经肌肉滞后,而不是为了优化对噪声/不确定性的鲁棒性。重要的是,最优解还导致了力大小增加速度与初始力方向精度之间的权衡。这是对将肌肉中的乘法噪声作为速度-精度权衡驱动因素的主流理论的一种替代。相反,我们发现速度-精度权衡仅源于神经肌肉滞后。最后,由于我们的模型有意使用理想化假设,其与人类数据的一致性表明生物系统的控制方式接近性能的物理边界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbef/2635488/1734b26d7755/rsta20080261f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验