Suppr超能文献

在联合运动和力量任务中,最大自主指尖力量产生不受运动速度的限制。

Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks.

作者信息

Keenan Kevin G, Santos Veronica J, Venkadesan Madhusudhan, Valero-Cuevas Francisco J

机构信息

Department of Biomedical Engineering and Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California 90089, USA.

出版信息

J Neurosci. 2009 Jul 8;29(27):8784-9. doi: 10.1523/JNEUROSCI.0853-09.2009.

Abstract

Numerous studies of limbs and fingers propose that force-velocity properties of muscle limit maximal voluntary force production during anisometric tasks, i.e., when muscles are shortening or lengthening. Although this proposition appears logical, our study on the simultaneous production of fingertip motion and force disagrees with this commonly held notion. We asked eight consenting adults to use their dominant index fingertip to maximize voluntary downward force against a horizontal surface at specific postures (static trials), and also during an anisometric "scratching" task of rhythmically moving the fingertip along a 5.8 +/- 0.5 cm target line. The metronome-timed flexion-extension movement speed varied 36-fold from "slow" (1.0 +/- 0.5 cm/s) to "fast" (35.9 +/- 7.8 cm/s). As expected, maximal downward voluntary force diminished (44.8 +/- 15.6%; p = 0.001) when any motion (slow or fast) was added to the task. Surprisingly, however, a 36-fold increase in speed did not affect this reduction in force magnitude. These remarkable results for such an ordinary task challenge the dominant role often attributed to force-velocity properties of muscle and provide insight into neuromechanical interactions. We propose an explanation that the simultaneous enforcement of mechanical constraints for motion and force reduces the set of feasible motor commands sufficiently so that force-velocity properties cease to be the force-limiting factor. While additional work is necessary to reveal the governing mechanisms, the dramatic influence that the simultaneous enforcement of motion and force constraints has on force output begins to explain the vulnerability of dexterous function to development, aging, and even mild neuromuscular pathology.

摘要

大量关于四肢和手指的研究表明,在等长任务中,即肌肉缩短或伸长时,肌肉的力-速度特性会限制最大自主力的产生。尽管这一观点看似合乎逻辑,但我们关于指尖运动和力同时产生的研究却与这一普遍观点不一致。我们要求八名同意参与的成年人在特定姿势下(静态试验),用其优势食指指尖对水平表面施加最大自主向下力,同时也在一项等长“抓挠”任务中,即沿着一条5.8±0.5厘米的目标线有节奏地移动指尖时施加该力。节拍器定时的屈伸运动速度从“慢”(1.0±0.5厘米/秒)到“快”(35.9±7.8厘米/秒)变化了36倍。正如预期的那样,当任务中添加任何运动(慢或快)时,最大向下自主力都会减小(44.8±15.6%;p = 0.001)。然而,令人惊讶的是,速度增加36倍并未影响力大小的这种减小。对于这样一项普通任务而言,这些显著结果挑战了通常归因于肌肉力-速度特性的主导作用,并为神经力学相互作用提供了见解。我们提出一种解释,即同时对运动和力施加机械约束会充分减少可行运动指令的集合,从而使力-速度特性不再是力的限制因素。虽然还需要更多工作来揭示其控制机制,但运动和力约束的同时施加对力输出的显著影响开始解释了灵巧功能在发育、衰老甚至轻度神经肌肉病理情况下的脆弱性。

相似文献

2
Control of finger force direction in the flexion-extension plane.手指在屈伸平面内的力方向控制。
Exp Brain Res. 2005 Mar;161(3):307-15. doi: 10.1007/s00221-004-2074-z. Epub 2004 Nov 3.
3
Kinematics and muscle activation patterns during a maximal voluntary rate activity in healthy elderly and young adults.
Aging Clin Exp Res. 2017 Oct;29(5):1001-1011. doi: 10.1007/s40520-016-0688-1. Epub 2016 Dec 1.
5
Neural control of motion-to-force transitions with the fingertip.指尖运动到力转换的神经控制。
J Neurosci. 2008 Feb 6;28(6):1366-73. doi: 10.1523/JNEUROSCI.4993-07.2008.
7
Age-related directional bias of fingertip force.与年龄相关的指尖力方向偏差。
Exp Brain Res. 2006 Nov;175(2):285-91. doi: 10.1007/s00221-006-0553-0.
10
Unsteady steady-states: central causes of unintentional force drift.非稳定稳态:非故意力漂移的核心原因。
Exp Brain Res. 2016 Dec;234(12):3597-3611. doi: 10.1007/s00221-016-4757-7. Epub 2016 Aug 19.

引用本文的文献

2
Neuromuscular control: from a biomechanist's perspective.神经肌肉控制:从生物力学家的视角
Front Sports Act Living. 2023 Jul 5;5:1217009. doi: 10.3389/fspor.2023.1217009. eCollection 2023.
3
Numerical instability of Hill-type muscle models.Hill 型肌肉模型的数值不稳定性。
J R Soc Interface. 2023 Feb;20(199):20220430. doi: 10.1098/rsif.2022.0430. Epub 2023 Feb 1.
5
Intermuscular coherence reflects functional coordination.肌间连贯性反映功能协调性。
J Neurophysiol. 2017 Sep 1;118(3):1775-1783. doi: 10.1152/jn.00204.2017. Epub 2017 Jun 28.
6
Forearm Flexor Muscles in Children with Cerebral Palsy Are Weak, Thin and Stiff.脑瘫患儿的前臂屈肌薄弱、纤细且僵硬。
Front Comput Neurosci. 2017 Apr 25;11:30. doi: 10.3389/fncom.2017.00030. eCollection 2017.
8
Temporal Modulations of Contact Force during Haptic Surface Exploration.触觉表面探索过程中接触力的时间调制
PLoS One. 2016 Apr 13;11(4):e0152897. doi: 10.1371/journal.pone.0152897. eCollection 2016.

本文引用的文献

2
Effects of neuromuscular lags on controlling contact transitions.神经肌肉延迟对控制接触转换的影响。
Philos Trans A Math Phys Eng Sci. 2009 Mar 28;367(1891):1163-79. doi: 10.1098/rsta.2008.0261.
3
Mechanics of human isolated voluntary muscle.人体离体随意肌的力学特性
Am J Physiol. 1947 Dec 1;151(2):612-20. doi: 10.1152/ajplegacy.1947.151.2.612.
4
Neural control of motion-to-force transitions with the fingertip.指尖运动到力转换的神经控制。
J Neurosci. 2008 Feb 6;28(6):1366-73. doi: 10.1523/JNEUROSCI.4993-07.2008.
5
The heat of activation and the heat of shortening in a muscle twitch.肌肉收缩时的活化热与缩短热。
Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195-211. doi: 10.1098/rspb.1949.0019.
7
The relation between force and speed in muscular contraction.肌肉收缩中力与速度的关系。
J Physiol. 1939 Jun 14;96(1):45-64. doi: 10.1113/jphysiol.1939.sp003756.
8
9
Age-related directional bias of fingertip force.与年龄相关的指尖力方向偏差。
Exp Brain Res. 2006 Nov;175(2):285-91. doi: 10.1007/s00221-006-0553-0.
10
Residual force enhancement in skeletal muscle.骨骼肌中的残余力增强
J Physiol. 2006 Aug 1;574(Pt 3):635-42. doi: 10.1113/jphysiol.2006.107748. Epub 2006 May 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验