Suppr超能文献

MinK和MiRP1对Kv2.1钾通道的调控

Regulation of the Kv2.1 potassium channel by MinK and MiRP1.

作者信息

McCrossan Zoe A, Roepke Torsten K, Lewis Anthony, Panaghie Gianina, Abbott Geoffrey W

机构信息

Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10065, USA.

出版信息

J Membr Biol. 2009 Mar;228(1):1-14. doi: 10.1007/s00232-009-9154-8. Epub 2009 Feb 14.

Abstract

Kv2.1 is a voltage-gated potassium (Kv) channel alpha-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single-transmembrane domain ancillary subunits that form complexes with Kv channel alpha-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N-MinK and S74L-MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1-Kv2.1 complexes, channels formed with M54T- or I57T-MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms.

摘要

Kv2.1是一种电压门控钾(Kv)通道α亚基,在哺乳动物的心脏和大脑中表达。由KCNE基因编码的MinK相关肽(MiRPs)是单跨膜结构域辅助亚基,它们与Kv通道α亚基形成复合物以改变其功能。人类MinK(KCNE1)和MiRP1(KCNE2)的突变与遗传性和获得性长QT综合征(LQTS)有关。在这里,来自大鼠心脏组织的免疫共沉淀表明,MinK和MiRP1都与Kv2.1形成天然心脏复合物。在CHO细胞中表达的亚基的全细胞电压钳研究中,大鼠MinK和MiRP1分别使Kv2.1电流密度降低了三倍和两倍;使Kv2.1激活(在+60 mV时)分别减慢了两倍和三倍;使Kv2.1失活减慢不到两倍。人类MinK使Kv2.1激活减慢25%,而人类MiRP1使Kv2.1激活和失活减慢两倍。还评估了先前与LQTS相关的人类MinK和MiRP1的遗传性突变。D76N-MinK和S74L-MinK降低了Kv2.1电流密度(分别为三倍和40%)并减慢了失活(分别为60%和80%)。与野生型人类MiRP1-Kv2.1复合物相比,由M54T-或I57T-MiRP1形成的通道显示激活大大减慢(分别为十倍和五倍)。这些数据拓宽了MinK和MiRP1在心脏生理学中的潜在作用,并支持任一亚基的遗传性突变可能通过多种机制导致心律失常的可能性。

相似文献

1
Regulation of the Kv2.1 potassium channel by MinK and MiRP1.
J Membr Biol. 2009 Mar;228(1):1-14. doi: 10.1007/s00232-009-9154-8. Epub 2009 Feb 14.
2
Does hERG coassemble with a beta subunit? Evidence for roles of MinK and MiRP1.
Novartis Found Symp. 2005;266:100-12; discussion 112-7, 155-8.
3
Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6.
J Physiol. 2003 Aug 15;551(Pt 1):253-62. doi: 10.1113/jphysiol.2003.046045. Epub 2003 Jun 18.
5
Impact of ancillary subunits on ventricular repolarization.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S42-6. doi: 10.1016/j.jelectrocard.2007.05.021.
6
MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating.
J Biol Chem. 2004 Feb 27;279(9):7884-92. doi: 10.1074/jbc.M310501200. Epub 2003 Dec 16.
7
Identification and functional characterization of a novel KCNE2 (MiRP1) mutation that alters HERG channel kinetics.
J Mol Med (Berl). 2002 Aug;80(8):524-32. doi: 10.1007/s00109-002-0364-0. Epub 2002 Jun 28.
9
Effects of MiRP1 and DPP6 beta-subunits on the blockade induced by flecainide of Kv4.3/KChIP2 channels.
Br J Pharmacol. 2008 Jun;154(4):774-86. doi: 10.1038/bjp.2008.134. Epub 2008 Apr 21.
10
A KCNE2 mutation in a patient with cardiac arrhythmia induced by auditory stimuli and serum electrolyte imbalance.
Cardiovasc Res. 2008 Jan;77(1):98-106. doi: 10.1093/cvr/cvm030. Epub 2007 Oct 4.

引用本文的文献

1
Functions of the KCNE Gene Family in Ion Channels.
Biochem Genet. 2025 Jul 16. doi: 10.1007/s10528-025-11202-3.
2
A novel loss-of-function gene variant in a twin with global developmental delay and seizures.
Front Cell Neurosci. 2024 Oct 14;18:1477989. doi: 10.3389/fncel.2024.1477989. eCollection 2024.
3
Reverse-engineered models reveal differential membrane properties of autonomic and cutaneous unmyelinated fibers.
PLoS Comput Biol. 2024 Oct 7;20(10):e1012475. doi: 10.1371/journal.pcbi.1012475. eCollection 2024 Oct.
4
Genetic risk factors for drug-induced long QT syndrome: findings from a large real-world case-control study.
Pharmacogenomics. 2024 Feb;25(3):117-131. doi: 10.2217/pgs-2023-0229. Epub 2024 Mar 20.
5
Adam, amigo, brain, and K channel.
Biophys Rev. 2023 Nov 6;15(5):1393-1424. doi: 10.1007/s12551-023-01163-5. eCollection 2023 Oct.
7
Kv Channel Ancillary Subunits: Where Do We Go from Here?
Physiology (Bethesda). 2022 Sep 1;37(5):0. doi: 10.1152/physiol.00005.2022.
8
EVAP: A two-photon imaging tool to study conformational changes in endogenous Kv2 channels in live tissues.
J Gen Physiol. 2021 Nov 1;153(11). doi: 10.1085/jgp.202012858. Epub 2021 Sep 28.
9
10
Hypochlorhydria reduces mortality in heart failure caused by Kcne2 gene deletion.
FASEB J. 2020 Aug;34(8):10699-10719. doi: 10.1096/fj.202000013RR. Epub 2020 Jun 25.

本文引用的文献

1
Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f).
FASEB J. 2008 Oct;22(10):3648-60. doi: 10.1096/fj.08-110171. Epub 2008 Jul 4.
2
Endogenous KCNE subunits govern Kv2.1 K+ channel activation kinetics in Xenopus oocyte studies.
Biophys J. 2006 Feb 15;90(4):1223-31. doi: 10.1529/biophysj.105.072504. Epub 2005 Dec 2.
3
Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium.
Pflugers Arch. 2005 Aug;450(5):307-16. doi: 10.1007/s00424-005-1445-z. Epub 2005 Jun 11.
4
Atrial fibrillation in KCNE1-null mice.
Circ Res. 2005 Jul 8;97(1):62-9. doi: 10.1161/01.RES.0000173047.42236.88. Epub 2005 Jun 9.
5
Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks).
J Mol Cell Cardiol. 2005 Feb;38(2):277-87. doi: 10.1016/j.yjmcc.2004.11.012. Epub 2005 Jan 20.
6
The MinK-related peptides.
Neuropharmacology. 2004 Nov;47(6):787-821. doi: 10.1016/j.neuropharm.2004.06.018.
7
Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation.
Am J Hum Genet. 2004 Nov;75(5):899-905. doi: 10.1086/425342. Epub 2004 Sep 13.
9
10
MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating.
J Biol Chem. 2004 Feb 27;279(9):7884-92. doi: 10.1074/jbc.M310501200. Epub 2003 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验