Suppr超能文献

辅助亚基对心室复极的影响。

Impact of ancillary subunits on ventricular repolarization.

作者信息

Abbott Geoffrey W, Xu Xianghua, Roepke Torsten K

机构信息

Greenberg Division of Cardiology, Department of Medicine, Cornell University, Weill Medical College, New York, NY, USA.

出版信息

J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S42-6. doi: 10.1016/j.jelectrocard.2007.05.021.

Abstract

Voltage-gated potassium (Kv) channels generate the outward K(+) ion currents that constitute the primary force in ventricular repolarization. Voltage-gated potassium channels comprise tetramers of pore-forming alpha subunits and, in probably most cases in vivo, ancillary or beta subunits that help define the properties of the Kv current generated. Ancillary subunits can be broadly categorized as cytoplasmic or transmembrane and can modify Kv channel trafficking, conductance, gating, ion selectivity, regulation, and pharmacology. Because of their often profound effects on Kv channel function, studies of the molecular correlates of ventricular repolarization must take into account ancillary subunits as well as alpha subunits. Cytoplasmic ancillary subunits include the Kv beta subunits, which regulate a range of Kv channels and may link channel gating to redox potential, and the KChIPs, which appear most often associated with Kv4 subfamily channels that generate the ventricular I(to) current. Transmembrane ancillary subunits include the MinK-related proteins (MiRPs) encoded by KCNE genes, which modulate members of most Kv alpha subunit subfamilies, and the putative 12-transmembrane domain KCR1 protein, which modulates hERG. In some cases, such as the ventricular I(Ks) channel complex, it is well established that the KCNQ1 alpha subunit must coassemble with the MinK (KCNE1) single-transmembrane domain ancillary subunit for recapitulation of the characteristic, unusually slowly-activating I(Ks) current. In other cases, it is not so clear-cut, and in particular, the roles of the other MiRPs (1-4) in regulating cardiac Kv channels such as KCNQ1 and hERG in vivo are under debate. MiRP1 alters hERG function and pharmacology, and inherited MiRP1 mutations are associated with inherited and acquired arrhythmias, but controversy exists over the native role of MiRP1 in regulating hERG (and therefore ventricular I(Kr)) in vivo. Some ancillary subunits may exhibit varied expression to shape spatial Kv current variation, for example, KChIP2 and the epicardial-endocardial I(to) current density gradient. Indeed, it is likely that most native ventricular Kv channels exhibit temporal and spatial heterogeneity of subunit composition, complicating both modeling of their functional impact on the ventricular action potential and design of specific current-targeted compounds. Here, we discuss current thinking and lines of experimentation aimed at resolving the complexities of the Kv channel complexes that repolarize the human ventricular myocardium.

摘要

电压门控钾(Kv)通道产生外向K(+)离子电流,这是心室复极化的主要驱动力。电压门控钾通道由形成孔道的α亚基四聚体组成,并且在体内大多数情况下,还包括辅助或β亚基,这些亚基有助于确定所产生的Kv电流的特性。辅助亚基可大致分为胞质型或跨膜型,它们可以改变Kv通道的运输、电导、门控、离子选择性、调节和药理学特性。由于它们对Kv通道功能常常有深远影响,因此心室复极化分子相关性的研究必须同时考虑辅助亚基和α亚基。胞质辅助亚基包括Kvβ亚基,它调节一系列Kv通道,并可能将通道门控与氧化还原电位联系起来;还有钾通道相互作用蛋白(KChIPs),它们最常与产生心室I(to)电流的Kv4亚家族通道相关联。跨膜辅助亚基包括由KCNE基因编码的MinK相关蛋白(MiRPs),它调节大多数Kvα亚基亚家族的成员;以及假定具有12个跨膜结构域的KCR1蛋白,它调节人ether-à-go-go相关基因(hERG)。在某些情况下,如心室I(Ks)通道复合体,已经明确KCNQ1α亚基必须与单跨膜结构域辅助亚基MinK(KCNE1)共同组装,才能重现特征性的、异常缓慢激活的I(Ks)电流。在其他情况下,情况并不那么明确,特别是其他MiRPs(1 - 4)在体内调节心脏Kv通道(如KCNQ1和hERG)的作用仍存在争议。MiRP1改变hERG的功能和药理学特性,遗传性MiRP1突变与遗传性和获得性心律失常相关,但关于MiRP1在体内调节hERG(进而调节心室I(Kr))的天然作用存在争议。一些辅助亚基可能表现出不同的表达,以形成空间Kv电流变化,例如,KChIP2与心外膜 - 心内膜I(to)电流密度梯度。实际上,大多数天然心室Kv通道可能表现出亚基组成的时间和空间异质性,这使得对它们对心室动作电位功能影响的建模以及针对特定电流的化合物设计都变得复杂。在这里,我们讨论当前的思路和实验方向,旨在解决使人心室心肌复极化的Kv通道复合体的复杂性问题。

相似文献

1
Impact of ancillary subunits on ventricular repolarization.
J Electrocardiol. 2007 Nov-Dec;40(6 Suppl):S42-6. doi: 10.1016/j.jelectrocard.2007.05.021.
2
Does hERG coassemble with a beta subunit? Evidence for roles of MinK and MiRP1.
Novartis Found Symp. 2005;266:100-12; discussion 112-7, 155-8.
3
The impact of ancillary subunits on small-molecule interactions with voltage-gated potassium channels.
Curr Pharm Des. 2006;12(18):2285-302. doi: 10.2174/138161206777585175.
4
Targeted deletion of kcne2 impairs ventricular repolarization via disruption of I(K,slow1) and I(to,f).
FASEB J. 2008 Oct;22(10):3648-60. doi: 10.1096/fj.08-110171. Epub 2008 Jul 4.
5
Regulation of the Kv2.1 potassium channel by MinK and MiRP1.
J Membr Biol. 2009 Mar;228(1):1-14. doi: 10.1007/s00232-009-9154-8. Epub 2009 Feb 14.
6
Accessory Kvbeta1 subunits differentially modulate the functional expression of voltage-gated K+ channels in mouse ventricular myocytes.
Circ Res. 2005 Mar 4;96(4):451-8. doi: 10.1161/01.RES.0000156890.25876.63. Epub 2005 Jan 20.
8
The MinK-related peptides.
Neuropharmacology. 2004 Nov;47(6):787-821. doi: 10.1016/j.neuropharm.2004.06.018.
10
KCNE2 confers background current characteristics to the cardiac KCNQ1 potassium channel.
EMBO J. 2000 Dec 1;19(23):6326-30. doi: 10.1093/emboj/19.23.6326.

引用本文的文献

1
Effective derivation of ventricular cardiomyocytes from hPSCs using ascorbic acid-containing maturation medium.
Anim Cells Syst (Seoul). 2023 Mar 24;27(1):82-92. doi: 10.1080/19768354.2023.2189932. eCollection 2023.
4
Kv Channel Ancillary Subunits: Where Do We Go from Here?
Physiology (Bethesda). 2022 Sep 1;37(5):0. doi: 10.1152/physiol.00005.2022.
5
The ERG1 K Channel and Its Role in Neuronal Health and Disease.
Front Mol Neurosci. 2022 May 3;15:890368. doi: 10.3389/fnmol.2022.890368. eCollection 2022.
6
7
Structures Illuminate Cardiac Ion Channel Functions in Health and in Long QT Syndrome.
Front Pharmacol. 2020 May 4;11:550. doi: 10.3389/fphar.2020.00550. eCollection 2020.
8
Regulation of Kv4.3 and hERG potassium channels by KChIP2 isoforms and DPP6 and response to the dual K channel activator NS3623.
Biochem Pharmacol. 2018 Apr;150:120-130. doi: 10.1016/j.bcp.2018.01.036. Epub 2018 Jan 31.
9
Chansporter complexes in cell signaling.
FEBS Lett. 2017 Sep;591(17):2556-2576. doi: 10.1002/1873-3468.12755. Epub 2017 Aug 2.
10
Molecular Pathophysiology of Congenital Long QT Syndrome.
Physiol Rev. 2017 Jan;97(1):89-134. doi: 10.1152/physrev.00008.2016.

本文引用的文献

1
HERG is protected from pharmacological block by alpha-1,2-glucosyltransferase function.
J Biol Chem. 2007 Feb 23;282(8):5506-13. doi: 10.1074/jbc.M605976200. Epub 2006 Dec 21.
3
Mechanisms of ventricular arrhythmogenesis in mice following targeted disruption of KCNE1 modelling long QT syndrome 5.
J Physiol. 2007 Jan 1;578(Pt 1):99-114. doi: 10.1113/jphysiol.2006.118133. Epub 2006 Nov 9.
5
The impact of ancillary subunits on small-molecule interactions with voltage-gated potassium channels.
Curr Pharm Des. 2006;12(18):2285-302. doi: 10.2174/138161206777585175.
6
The KCNE2 potassium channel ancillary subunit is essential for gastric acid secretion.
J Biol Chem. 2006 Aug 18;281(33):23740-7. doi: 10.1074/jbc.M604155200. Epub 2006 Jun 5.
8
Modulation of voltage-dependent Shaker family potassium channels by an aldo-keto reductase.
J Biol Chem. 2006 Jun 2;281(22):15194-200. doi: 10.1074/jbc.M513809200. Epub 2006 Mar 28.
10
Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve.
Circulation. 2005 Sep 6;112(10):1384-91. doi: 10.1161/CIRCULATIONAHA.105.543306. Epub 2005 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验