Suppr超能文献

人工心脏瓣膜的流体力学

Fluid mechanics of artificial heart valves.

作者信息

Dasi Lakshmi P, Simon Helene A, Sucosky Philippe, Yoganathan Ajit P

机构信息

Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0535, USA.

出版信息

Clin Exp Pharmacol Physiol. 2009 Feb;36(2):225-37. doi: 10.1111/j.1440-1681.2008.05099.x.

Abstract
  1. Artificial heart valves have been in use for over five decades to replace diseased heart valves. Since the first heart valve replacement performed with a caged-ball valve, more than 50 valve designs have been developed, differing principally in valve geometry, number of leaflets and material. To date, all artificial heart valves are plagued with complications associated with haemolysis, coagulation for mechanical heart valves and leaflet tearing for tissue-based valve prosthesis. For mechanical heart valves, these complications are believed to be associated with non-physiological blood flow patterns. 2. In the present review, we provide a bird's-eye view of fluid mechanics for the major artificial heart valve types and highlight how the engineering approach has shaped this rapidly diversifying area of research. 3. Mechanical heart valve designs have evolved significantly, with the most recent designs providing relatively superior haemodynamics with very low aerodynamic resistance. However, high shearing of blood cells and platelets still pose significant design challenges and patients must undergo life-long anticoagulation therapy. Bioprosthetic or tissue valves do not require anticoagulants due to their distinct similarity to the native valve geometry and haemodynamics, but many of these valves fail structurally within the first 10-15 years of implantation. 4. These shortcomings have directed present and future research in three main directions in attempts to design superior artificial valves: (i) engineering living tissue heart valves; (ii) development of advanced computational tools; and (iii) blood experiments to establish the link between flow and blood damage.
摘要
  1. 人工心脏瓣膜已使用超过五十年来替代病变的心脏瓣膜。自从首次使用笼球瓣进行心脏瓣膜置换以来,已开发出50多种瓣膜设计,主要区别在于瓣膜几何形状、瓣叶数量和材料。迄今为止,所有人工心脏瓣膜都存在与溶血、机械心脏瓣膜的凝血以及组织基瓣膜假体的瓣叶撕裂相关的并发症。对于机械心脏瓣膜,这些并发症被认为与非生理性血流模式有关。2. 在本综述中,我们对主要人工心脏瓣膜类型的流体力学进行了鸟瞰,并强调了工程方法如何塑造了这个迅速多样化的研究领域。3. 机械心脏瓣膜设计有了显著发展,最新设计具有相对优越的血流动力学,空气动力学阻力非常低。然而,血细胞和血小板的高剪切力仍然带来重大设计挑战,患者必须接受终身抗凝治疗。生物假体或组织瓣膜由于其与天然瓣膜几何形状和血流动力学明显相似,不需要抗凝剂,但许多此类瓣膜在植入后的头10至15年内会出现结构故障。4. 这些缺点促使当前和未来的研究朝着三个主要方向进行,试图设计出更优质的人工瓣膜:(i)工程化活组织心脏瓣膜;(ii)开发先进的计算工具;(iii)进行血液实验以建立血流与血液损伤之间的联系。

相似文献

1
Fluid mechanics of artificial heart valves.
Clin Exp Pharmacol Physiol. 2009 Feb;36(2):225-37. doi: 10.1111/j.1440-1681.2008.05099.x.
2
Fluid mechanics of heart valves.
Annu Rev Biomed Eng. 2004;6:331-62. doi: 10.1146/annurev.bioeng.6.040803.140111.
4
Mechanical considerations for polymeric heart valve development: Biomechanics, materials, design and manufacturing.
Biomaterials. 2019 Dec;225:119493. doi: 10.1016/j.biomaterials.2019.119493. Epub 2019 Sep 17.
5
Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
J Biomech. 2013 Jul 26;46(11):1792-800. doi: 10.1016/j.jbiomech.2013.05.015. Epub 2013 Jun 18.
6
Impact of Clinically Relevant Elliptical Deformations on the Damage Patterns of Sagging and Stretched Leaflets in a Bioprosthetic Heart Valve.
Cardiovasc Eng Technol. 2018 Sep;9(3):351-364. doi: 10.1007/s13239-018-0366-x. Epub 2018 Jun 12.
7
Flow in prosthetic heart valves: state-of-the-art and future directions.
Ann Biomed Eng. 2005 Dec;33(12):1689-94. doi: 10.1007/s10439-005-8759-z.
9
Cardiac valve reconstruction and replacement: a brief review.
Radiographics. 1992 Jul;12(4):659-71. doi: 10.1148/radiographics.12.4.1636032.
10
Can mechanical heart valves perform similarly to tissue valves? An in vitro study.
J Biomech. 2024 Sep;174:112270. doi: 10.1016/j.jbiomech.2024.112270. Epub 2024 Aug 8.

引用本文的文献

1
Reply to Comment on "Effect of Transcatheter Edge-to-Edge Repair on Left Ventricular Flow Features".
Cardiovasc Eng Technol. 2025 Sep 2. doi: 10.1007/s13239-025-00804-y.
2
Comparative study of flow rate- and material-dependent human plasma protein adsorption on oxygenator membranes and heat exchanger materials.
Front Cardiovasc Med. 2025 Jun 17;12:1578538. doi: 10.3389/fcvm.2025.1578538. eCollection 2025.
3
A novel approach to flow visualization through mechanical heart valves.
Proc Inst Mech Eng H. 2025 Jun;239(6):584-590. doi: 10.1177/09544119251342868. Epub 2025 Jun 25.
4
Effect of Transcatheter Edge-to-Edge Repair on Left Ventricular Flow Features.
Cardiovasc Eng Technol. 2025 Apr 3. doi: 10.1007/s13239-025-00781-2.
5
A chronological history of heart valve prostheses to offer perspectives of their limitations.
Front Bioeng Biotechnol. 2025 Feb 14;13:1533421. doi: 10.3389/fbioe.2025.1533421. eCollection 2025.
6
Rethinking mechanical heart valves in the aortic position: new paradigms in design and testing.
Front Cardiovasc Med. 2025 Jan 30;11:1458809. doi: 10.3389/fcvm.2024.1458809. eCollection 2024.
7
4D-Flow MRI and Vector Ultrasound in the In-Vitro Evaluation of Surgical Aortic Heart Valves - a Pilot Study.
J Cardiovasc Transl Res. 2025 Feb;18(1):158-168. doi: 10.1007/s12265-024-10564-0. Epub 2024 Oct 4.

本文引用的文献

1
Procoagulant properties of flow fields in stenotic and expansive orifices.
Ann Biomed Eng. 2008 Jan;36(1):1-13. doi: 10.1007/s10439-007-9398-3. Epub 2007 Nov 6.
2
Thrombin formation in vitro in response to shear-induced activation of platelets.
Thromb Res. 2007;121(3):397-406. doi: 10.1016/j.thromres.2007.04.006. Epub 2007 May 29.
3
Spatio-temporal flow analysis in bileaflet heart valve hinge regions: potential analysis for blood element damage.
Ann Biomed Eng. 2007 Aug;35(8):1333-46. doi: 10.1007/s10439-007-9302-1. Epub 2007 Apr 13.
5
Cluster size distribution and scaling for spherical particles and red blood cells in pressure-driven flows at small Reynolds number.
Phys Rev Lett. 2006 May 26;96(20):204502. doi: 10.1103/PhysRevLett.96.204502. Epub 2006 May 22.
6
Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry.
Ann Biomed Eng. 2006 Jun;34(6):936-52. doi: 10.1007/s10439-006-9117-5. Epub 2006 May 9.
7
Flow and thrombosis at orifices simulating mechanical heart valve leakage regions.
J Biomech Eng. 2006 Feb;128(1):30-9. doi: 10.1115/1.2133768.
8
Research approaches for studying flow-induced thromboembolic complications in blood recirculating devices.
Expert Rev Med Devices. 2004 Sep;1(1):65-80. doi: 10.1586/17434440.1.1.65.
9
Will heart valve tissue engineering change the world?
Nat Clin Pract Cardiovasc Med. 2005 Feb;2(2):60-1. doi: 10.1038/ncpcardio0112.
10
A comparison of flow field structures of two tri-leaflet polymeric heart valves.
Ann Biomed Eng. 2005 Apr;33(4):429-43. doi: 10.1007/s10439-005-2498-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验