Suppr超能文献

微卫星是支持对历史进行准确推断的分子时钟。

Microsatellites are molecular clocks that support accurate inferences about history.

作者信息

Sun James X, Mullikin James C, Patterson Nick, Reich David E

机构信息

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

Mol Biol Evol. 2009 May;26(5):1017-27. doi: 10.1093/molbev/msp025. Epub 2009 Feb 12.

Abstract

Microsatellite length mutations are often modeled using the generalized stepwise mutation process, which is a type of random walk. If this model is sufficiently accurate, one can estimate the coalescence time between alleles of a locus after a mathematical transformation of the allele lengths. When large-scale microsatellite genotyping first became possible, there was substantial interest in using this approach to make inferences about time and demography, but that interest has waned because it has not been possible to empirically validate the clock by comparing it with data in which the mutation process is well understood. We analyzed data from 783 microsatellite loci in human populations and 292 loci in chimpanzee populations, and compared them with up to one gigabase of aligned sequence data, where the molecular clock based upon nucleotide substitutions is believed to be reliable. We empirically demonstrate a remarkable linearity (r(2) > 0.95) between the microsatellite average square distance statistic and sequence divergence. We demonstrate that microsatellites are accurate molecular clocks for coalescent times of at least 2 million years (My). We apply this insight to confirm that the African populations San, Biaka Pygmy, and Mbuti Pygmy have the deepest coalescent times among populations in the Human Genome Diversity Project. Furthermore, we show that microsatellites support unbiased estimates of population differentiation (F(ST)) that are less subject to ascertainment bias than single nucleotide polymorphism (SNP) F(ST). These results raise the prospect of using microsatellite data sets to determine parameters of population history. When genotyped along with SNPs, microsatellite data can also be used to correct for SNP ascertainment bias.

摘要

微卫星长度突变通常使用广义逐步突变过程进行建模,这是一种随机游走类型。如果该模型足够准确,那么在对等位基因长度进行数学变换后,就可以估计一个基因座上等位基因之间的合并时间。当大规模微卫星基因分型首次成为可能时,人们对使用这种方法来推断时间和人口统计学产生了浓厚兴趣,但这种兴趣已经减弱,因为无法通过将其与突变过程已被充分理解的数据进行比较来实证验证该时钟。我们分析了人类群体中783个微卫星基因座和黑猩猩群体中292个基因座的数据,并将它们与多达10亿碱基的比对序列数据进行比较,据信基于核苷酸替换的分子时钟在这些序列数据中是可靠的。我们通过实证证明了微卫星平均平方距离统计量与序列分歧之间具有显著的线性关系(r(2) > 0.95)。我们证明微卫星对于至少200万年(My)的合并时间是准确的分子时钟。我们运用这一见解证实,在人类基因组多样性项目的群体中,非洲群体桑人、比亚卡俾格米人和姆布蒂俾格米人具有最深的合并时间。此外,我们表明微卫星支持对群体分化(F(ST))的无偏估计,与单核苷酸多态性(SNP)F(ST)相比,其受确定偏差的影响较小。这些结果为使用微卫星数据集来确定群体历史参数带来了希望。当与SNP一起进行基因分型时,微卫星数据还可用于校正SNP确定偏差。

相似文献

1
Microsatellites are molecular clocks that support accurate inferences about history.
Mol Biol Evol. 2009 May;26(5):1017-27. doi: 10.1093/molbev/msp025. Epub 2009 Feb 12.
2
Factors influencing ascertainment bias of microsatellite allele sizes: impact on estimates of mutation rates.
Genetics. 2013 Oct;195(2):563-72. doi: 10.1534/genetics.113.154161. Epub 2013 Aug 14.
6
Divergent microsatellite evolution in the human and chimpanzee lineages.
FEBS Lett. 2007 May 29;581(13):2523-6. doi: 10.1016/j.febslet.2007.04.073. Epub 2007 May 4.
7
9
Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8748-53. doi: 10.1073/pnas.122067599. Epub 2002 Jun 17.

引用本文的文献

1
Unraveling the hierarchical genetic structure of tea green leafhopper, , in East Asia based on SSRs and SNPs.
Ecol Evol. 2022 Oct 1;12(10):e9377. doi: 10.1002/ece3.9377. eCollection 2022 Oct.
3
Origin and dispersion pathways of guava in the Galapagos Islands inferred through genetics and historical records.
Ecol Evol. 2021 Oct 4;11(21):15111-15131. doi: 10.1002/ece3.8193. eCollection 2021 Nov.
5
micRocounter: Microsatellite Characterization in Genome Assemblies.
G3 (Bethesda). 2019 Oct 7;9(10):3101-3104. doi: 10.1534/g3.119.400335.
6
Synchronous diversification of Sulawesi's iconic artiodactyls driven by recent geological events.
Proc Biol Sci. 2018 Apr 11;285(1876). doi: 10.1098/rspb.2017.2566.
7
Chance long-distance or human-mediated dispersal? How attained its pan-tropical distribution.
R Soc Open Sci. 2017 Apr 12;4(4):170105. doi: 10.1098/rsos.170105. eCollection 2017 Apr.
9
Evidence of Subdivisions on Evolutionary Timescales in a Large, Declining Marsupial Distributed across a Phylogeographic Barrier.
PLoS One. 2016 Oct 12;11(10):e0162789. doi: 10.1371/journal.pone.0162789. eCollection 2016.
10
The Genome as an Evolutionary Timepiece.
Genome Biol Evol. 2016 Oct 5;8(9):3006-3010. doi: 10.1093/gbe/evw220.

本文引用的文献

2
Accelerated genetic drift on chromosome X during the human dispersal out of Africa.
Nat Genet. 2009 Jan;41(1):66-70. doi: 10.1038/ng.303. Epub 2008 Dec 21.
3
Population differentiation and migration: coalescence times in a two-sex island model for autosomal and X-linked loci.
Theor Popul Biol. 2008 Dec;74(4):291-301. doi: 10.1016/j.tpb.2008.08.003. Epub 2008 Sep 4.
4
ADZE: a rarefaction approach for counting alleles private to combinations of populations.
Bioinformatics. 2008 Nov 1;24(21):2498-504. doi: 10.1093/bioinformatics/btn478. Epub 2008 Sep 8.
5
Analysis of chimpanzee history based on genome sequence alignments.
PLoS Genet. 2008 Apr 18;4(4):e1000057. doi: 10.1371/journal.pgen.1000057.
6
Geographic patterns of genome admixture in Latin American Mestizos.
PLoS Genet. 2008 Mar 21;4(3):e1000037. doi: 10.1371/journal.pgen.1000037.
7
Worldwide human relationships inferred from genome-wide patterns of variation.
Science. 2008 Feb 22;319(5866):1100-4. doi: 10.1126/science.1153717.
8
The genetic structure of Pacific Islanders.
PLoS Genet. 2008 Jan;4(1):e19. doi: 10.1371/journal.pgen.0040019.
9
Genetic variation and population structure in native Americans.
PLoS Genet. 2007 Nov;3(11):e185. doi: 10.1371/journal.pgen.0030185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验