Langlands T A M, Henry B I, Wearne S L
Department of Applied Mathematics, School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia.
J Math Biol. 2009 Dec;59(6):761-808. doi: 10.1007/s00285-009-0251-1. Epub 2009 Feb 17.
We introduce fractional Nernst-Planck equations and derive fractional cable equations as macroscopic models for electrodiffusion of ions in nerve cells when molecular diffusion is anomalous subdiffusion due to binding, crowding or trapping. The anomalous subdiffusion is modelled by replacing diffusion constants with time dependent operators parameterized by fractional order exponents. Solutions are obtained as functions of the scaling parameters for infinite cables and semi-infinite cables with instantaneous current injections. Voltage attenuation along dendrites in response to alpha function synaptic inputs is computed. Action potential firing rates are also derived based on simple integrate and fire versions of the models. Our results show that electrotonic properties and firing rates of nerve cells are altered by anomalous subdiffusion in these models. We have suggested electrophysiological experiments to calibrate and validate the models.
我们引入分数阶能斯特 - 普朗克方程,并推导分数阶电缆方程,将其作为分子扩散因结合、拥挤或捕获而呈现反常亚扩散时神经细胞中离子电扩散的宏观模型。通过用由分数阶指数参数化的时间相关算子替换扩散常数来模拟反常亚扩散。对于无限电缆和具有瞬时电流注入的半无限电缆,得到了作为缩放参数函数的解。计算了响应α函数突触输入时沿树突的电压衰减。还基于模型的简单积分发放版本推导了动作电位发放率。我们的结果表明,在这些模型中,反常亚扩散会改变神经细胞的电紧张特性和发放率。我们建议进行电生理实验以校准和验证这些模型。