Suppr超能文献

电扩散模型用于描述星形胶质细胞和神经元离子浓度动态变化。

Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.

机构信息

Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.

Centre for Integrative Genetics, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.

出版信息

PLoS Comput Biol. 2013;9(12):e1003386. doi: 10.1371/journal.pcbi.1003386. Epub 2013 Dec 19.

Abstract

The cable equation is a proper framework for modeling electrical neural signalling that takes place at a timescale at which the ionic concentrations vary little. However, in neural tissue there are also key dynamic processes that occur at longer timescales. For example, endured periods of intense neural signaling may cause the local extracellular K(+)-concentration to increase by several millimolars. The clearance of this excess K(+) depends partly on diffusion in the extracellular space, partly on local uptake by astrocytes, and partly on intracellular transport (spatial buffering) within astrocytes. These processes, that take place at the time scale of seconds, demand a mathematical description able to account for the spatiotemporal variations in ion concentrations as well as the subsequent effects of these variations on the membrane potential. Here, we present a general electrodiffusive formalism for modeling of ion concentration dynamics in a one-dimensional geometry, including both the intra- and extracellular domains. Based on the Nernst-Planck equations, this formalism ensures that the membrane potential and ion concentrations are in consistency, it ensures global particle/charge conservation and it accounts for diffusion and concentration dependent variations in resistivity. We apply the formalism to a model of astrocytes exchanging ions with the extracellular space. The simulations show that K(+)-removal from high-concentration regions is driven by a local depolarization of the astrocyte membrane, which concertedly (i) increases the local astrocytic uptake of K(+), (ii) suppresses extracellular transport of K(+), (iii) increases axial transport of K(+) within astrocytes, and (iv) facilitates astrocytic relase of K(+) in regions where the extracellular concentration is low. Together, these mechanisms seem to provide a robust regulatory scheme for shielding the extracellular space from excess K(+).

摘要

电缆方程是建模电神经信号的适当框架,适用于离子浓度变化不大的时间尺度。然而,在神经组织中,也存在关键的动态过程,这些过程发生在更长的时间尺度上。例如,持续的强烈神经信号可能导致局部细胞外 K(+)浓度增加几个毫摩尔。清除这种多余的 K(+)部分取决于细胞外空间的扩散,部分取决于星形胶质细胞的局部摄取,部分取决于星形胶质细胞内的细胞内转运(空间缓冲)。这些过程发生在秒的时间尺度上,需要一种数学描述,能够解释离子浓度的时空变化,以及这些变化对膜电位的后续影响。在这里,我们提出了一种用于一维几何模型中离子浓度动力学的一般电扩散形式,包括细胞内和细胞外区域。基于能斯特-普朗克方程,这种形式确保了膜电位和离子浓度的一致性,确保了全局粒子/电荷守恒,并考虑了扩散和浓度相关的电阻率变化。我们将该形式应用于与细胞外空间交换离子的星形胶质细胞模型。模拟结果表明,高浓度区域的 K(+)清除是由星形胶质细胞膜的局部去极化驱动的,这共同(i)增加了星形胶质细胞对 K(+)的局部摄取,(ii)抑制了 K(+)的细胞外转运,(iii)增加了星形胶质细胞内 K(+)的轴向转运,以及(iv)促进了细胞外浓度低的区域中 K(+)的星形胶质细胞释放。这些机制似乎为屏蔽细胞外空间免受多余 K(+)的影响提供了一种稳健的调节方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13c7/3868551/2eb25aaad82c/pcbi.1003386.g001.jpg

相似文献

1
Electrodiffusive model for astrocytic and neuronal ion concentration dynamics.
PLoS Comput Biol. 2013;9(12):e1003386. doi: 10.1371/journal.pcbi.1003386. Epub 2013 Dec 19.
2
Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.
J Physiol Sci. 2016 Mar;66(2):127-42. doi: 10.1007/s12576-015-0404-5. Epub 2015 Oct 27.
3
Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space.
PLoS Comput Biol. 2009 Jan;5(1):e1000272. doi: 10.1371/journal.pcbi.1000272. Epub 2009 Jan 23.
4
Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms.
Glia. 2017 Oct;65(10):1668-1681. doi: 10.1002/glia.23187. Epub 2017 Jul 26.
6
An electrodiffusive, ion conserving Pinsky-Rinzel model with homeostatic mechanisms.
PLoS Comput Biol. 2020 Apr 29;16(4):e1007661. doi: 10.1371/journal.pcbi.1007661. eCollection 2020 Apr.
7
9
Neuromodulation of Astrocytic K Clearance.
Int J Mol Sci. 2021 Mar 3;22(5):2520. doi: 10.3390/ijms22052520.
10
Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.
PLoS Comput Biol. 2016 Nov 7;12(11):e1005193. doi: 10.1371/journal.pcbi.1005193. eCollection 2016 Nov.

引用本文的文献

1
Current Flow in Nerves and Mitochondria: An Electro-Osmotic Approach.
Biomolecules. 2025 Jul 22;15(8):1063. doi: 10.3390/biom15081063.
2
Quantifying human gray matter microstructure using neurite exchange imaging (NEXI) and 300 mT/m gradients.
Imaging Neurosci (Camb). 2024 Mar 6;2. doi: 10.1162/imag_a_00104. eCollection 2024.
3
Investigate channel rectifications and neural dynamics by an electrodiffusive Gauss-Nernst-Planck approach.
PLoS Comput Biol. 2025 Jun 30;21(6):e1012883. doi: 10.1371/journal.pcbi.1012883. eCollection 2025 Jun.
4
An Empirical-Theoretical Approach to Determine Astroglial Potassium Upon Ischemic Stress.
Methods Mol Biol. 2025;2896:33-49. doi: 10.1007/978-1-0716-4366-2_3.
5
Cerebrospinal Fluid Flow.
Annu Rev Fluid Mech. 2023;55:237-264. doi: 10.1146/annurev-fluid-120720-011638. Epub 2022 Sep 28.
6
Local changes in potassium ions regulate input integration in active dendrites.
PLoS Biol. 2024 Dec 4;22(12):e3002935. doi: 10.1371/journal.pbio.3002935. eCollection 2024 Dec.
7
An electrodiffusive network model with multicompartmental neurons and synaptic connections.
PLoS Comput Biol. 2024 Nov 12;20(11):e1012114. doi: 10.1371/journal.pcbi.1012114. eCollection 2024 Nov.
8
Analysis of potassium ion diffusion from neurons to capillaries: Effects of astrocyte endfeet geometry.
Eur J Neurosci. 2024 Feb;59(3):323-332. doi: 10.1111/ejn.16232. Epub 2023 Dec 20.
10
Slow ion concentration oscillations and multiple states in neuron-glia interaction-insights gained from reduced mathematical models.
Front Netw Physiol. 2023 May 22;3:1189118. doi: 10.3389/fnetp.2023.1189118. eCollection 2023.

本文引用的文献

2
Glial K⁺ clearance and cell swelling: key roles for cotransporters and pumps.
Neurochem Res. 2012 Nov;37(11):2299-309. doi: 10.1007/s11064-012-0731-3. Epub 2012 Feb 26.
3
Relationship between glial potassium regulation and axon excitability: a role for glial Kir4.1 channels.
Glia. 2012 Apr;60(4):651-60. doi: 10.1002/glia.22299. Epub 2012 Jan 30.
4
A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus.
PLoS Comput Biol. 2011 Sep;7(9):e1002160. doi: 10.1371/journal.pcbi.1002160. Epub 2011 Sep 29.
5
From a glial syncytium to a more restricted and specific glial networking.
J Physiol Paris. 2012 Jan;106(1-2):34-9. doi: 10.1016/j.jphysparis.2011.09.001. Epub 2011 Sep 29.
6
Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms.
J Comput Neurosci. 2012 Feb;32(1):147-65. doi: 10.1007/s10827-011-0345-9. Epub 2011 Jun 11.
7
Second-order Poisson Nernst-Planck solver for ion channel transport.
J Comput Phys. 2011 Jun;230(13):5239-5262. doi: 10.1016/j.jcp.2011.03.020.
8
The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
J Theor Biol. 2009 May 21;258(2):219-28. doi: 10.1016/j.jtbi.2009.01.032. Epub 2009 Feb 7.
9
Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size.
J Comput Neurosci. 2009 Dec;27(3):415-36. doi: 10.1007/s10827-009-0153-7. Epub 2009 May 5.
10
Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions.
J Math Biol. 2009 Dec;59(6):761-808. doi: 10.1007/s00285-009-0251-1. Epub 2009 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验