UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory in Neuroscience, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
Nat Rev Neurosci. 2017 Sep 19;18(10):598-612. doi: 10.1038/nrn.2017.101.
The emerging technological revolution in genetically encoded molecular sensors and super-resolution imaging provides neuroscientists with a pass to the real-time nano-world. On this small scale, however, classical principles of electrophysiology do not always apply. This is in large part because the nanoscopic heterogeneities in ionic concentrations and the local electric fields associated with individual ions and their movement can no longer be ignored. Here, we review basic principles of molecular electrodiffusion in the cellular environment of organized brain tissue. We argue that accurate interpretation of physiological observations on the nanoscale requires a better understanding of the underlying electrodiffusion phenomena.
新兴的基因编码分子传感器和超分辨率成像技术革命为神经科学家提供了实时进入纳米世界的通行证。然而,在这个小尺度上,经典的电生理学原理并不总是适用。这在很大程度上是因为与单个离子及其运动相关的离子浓度和局部电场的纳米级异质性不再可以忽略不计。在这里,我们回顾了组织化脑组织细胞环境中分子电扩散的基本原理。我们认为,要准确解释纳米尺度上的生理观察结果,就需要更好地理解潜在的电扩散现象。