Suppr超能文献

蛋白质靶向钆基磁共振成像(MRI)造影剂:设计与作用机制

Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action.

作者信息

Caravan Peter

机构信息

A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA.

出版信息

Acc Chem Res. 2009 Jul 21;42(7):851-62. doi: 10.1021/ar800220p.

Abstract

Magnetic resonance imaging (MRI) is a powerful medical diagnostic technique: it can penetrate deep into tissue, provide excellent soft tissue contrast with sub-millimeter resolution, and does not employ ionizing radiation. Targeted contrast agents provide an additional layer of molecular specificity to the wealth of anatomical and functional information already attainable by MRI. However, the major challenge for molecular MR imaging is sensitivity: micromolar concentrations of Gd(III) are required to cause a detectable signal change, which makes detecting proteins by MRI a challenge. Protein-targeted MRI contrast agents are bifunctional molecules comprising a protein-targeting moiety and typically one or more gadolinium chelates for detection by MRI. The ability of the contrast agent to enhance the MR image is termed relaxivity, and it depends upon many molecular factors, including protein binding itself. As in other imaging modalities, protein binding provides the pharmacokinetic effect of concentrating the agent at the region of interest. Unique to MRI, protein binding provides the pharmacodynamic effect of increasing the relaxivity of the contrast agent, thereby increasing the MR signal. In designing new agents, optimization of both the targeting function and the relaxivity is critical. In this Account, we focus on optimization of the relaxivity of targeted agents. Relaxivity depends upon speciation, chemical structure, and dynamic processes, such as water exchange kinetics and rotational tumbling rates. We describe mechanistic studies that relate these factors to the observed relaxivities and use these findings as the basis of rational design of improved agents. In addition to traditional biochemical methods to characterize ligand-protein interactions, the presence of the metal ion enables more obscure biophysical techniques, such as relaxometry and electron nuclear double resonance, to be used to elucidate the mechanism of relaxivity differences. As a case study, we explore the mechanism of action of the serum-albumin-targeted angiography agent MS-325 and closely related compounds and show how small changes in the metal chelate can impact relaxivity. We found that, while protein binding generally improves relaxivity by slowing the tumbling rate of the complex, in some cases, the protein itself can also negatively affect hydration of the metal complex and/or inner-sphere water exchange. Drawing on these findings, we designed next-generation agents targeting albumin, fibrin, or collagen and incorporating up to four gadolinium chelates. Through judicious molecular design, we show that high-relaxivity complexes with high target affinity can be realized.

摘要

磁共振成像(MRI)是一种强大的医学诊断技术:它可以深入穿透组织,以亚毫米分辨率提供出色的软组织对比度,并且不使用电离辐射。靶向造影剂为MRI已经能够获取的丰富解剖和功能信息增添了一层分子特异性。然而,分子磁共振成像的主要挑战是灵敏度:需要微摩尔浓度的钆(III)才能引起可检测的信号变化,这使得通过MRI检测蛋白质成为一项挑战。蛋白质靶向MRI造影剂是双功能分子,包含蛋白质靶向部分和通常一个或多个用于MRI检测的钆螯合物。造影剂增强MR图像的能力称为弛豫率,它取决于许多分子因素,包括蛋白质结合本身。与其他成像方式一样,蛋白质结合提供了将造影剂集中在感兴趣区域的药代动力学效应。MRI独有的是,蛋白质结合提供了增加造影剂弛豫率的药效学效应,从而增加MR信号。在设计新的造影剂时,优化靶向功能和弛豫率都至关重要。在本综述中,我们专注于优化靶向造影剂的弛豫率。弛豫率取决于物种形成、化学结构和动态过程,如水交换动力学和旋转翻滚速率。我们描述了将这些因素与观察到的弛豫率相关联的机理研究,并将这些发现用作合理设计改进型造影剂的基础。除了用于表征配体 - 蛋白质相互作用的传统生化方法外,金属离子的存在使得更模糊的生物物理技术,如弛豫测量法和电子核双共振,能够用于阐明弛豫率差异的机制。作为一个案例研究,我们探索了血清白蛋白靶向血管造影剂MS - 325及其密切相关化合物的作用机制,并展示了金属螯合物的微小变化如何影响弛豫率。我们发现,虽然蛋白质结合通常通过减慢复合物的翻滚速率来提高弛豫率,但在某些情况下,蛋白质本身也会对金属复合物的水合作用和/或内球水交换产生负面影响。基于这些发现,我们设计了靶向白蛋白、纤维蛋白或胶原蛋白并包含多达四个钆螯合物的下一代造影剂。通过明智的分子设计,我们表明可以实现具有高靶标亲和力的高弛豫率复合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验